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Abstract

In this paper, power allocation over time-varying multi-user multi-relay amplify-and-forward networks

is studied. Specifically, stochastic network sum-rate, max-min rate power allocation and total power

minimization problems are formulated. However, solving such stochastic problems relies on perfect global

instantaneous channel state information (CSI), and thus entails complex computations and excessive

communication overheads. To circumvent these issues, second-order statistics of the CSI (i.e. partial

CSI) are utilized to transform the stochastic formulations into deterministic optimization problems in

terms of ergodic capacity while satisfying quality-of-service constraints via target outage probability.

The obtained optimal deterministic problems are non-convex and thus are computationally prohibitive.

However, at high enough signal-to-noise ratio, such problems can be transformed into asymptotically

convex ones, and thus solved efficiently. Simulation results illustrate that the proposed approximate

deterministic power allocation reformulations closely agree with their optimal exact deterministic and

dynamic counterparts.

Index Terms

Max-min, network sum-rate, outage probability, power allocation, relay channels, quality-of-service

I. INTRODUCTION

Cooperative relay networks have been proposed to mimic multiple-input multiple-output (MIMO)

systems by forming virtual antenna arrays to exploit spatial diversity gains and improve network per-

formance [1]. The benefits of such networks can be further reaped through optimal power allocation

between the source and/or relay nodes, so as to improve different performance criteria. However, this

requires knowledge of the channel state information at the relays and/or destination nodes. In time-

varying wireless channels, optimal power allocation is a challenging task due to the need for accurate and

complete global instantaneous channel state information (CSI). In turn, the power allocation task becomes
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a dynamic problem; requiring adaptive computationally-expensive algorithmic solutions, and excessive

communication overheads. In practice, instantaneous CSI is obtained via channel estimation, which

introduces estimation errors [2]. Consequently, such dynamic/adaptive algorithms experience significant

performance loss, as the CSI may be erroneous and rather outdated, which has detrimental effects on the

end-to-end signal-to-noise ratio (SNR), ultimately leading to sub-optimal performance and/or violation

of quality-of-service (QoS) constraints [3,4]. Instead, each user should aim at maximizing its average

achievable rate, while satisfying a probabilistic QoS specification (i.e. its average rate being not less

than its target value [5]). To achieve this, it is imperative to consider alternative means to optimal

power allocation with partial CSI, so as to achieve optimal/near-optimal performance while reducing

computational complexity and communication overheads [6].

There has been a plethora of research works on power allocation in amplify-and-forward (AF) relay

networks; however, most of them assume fixed channel gains or are based on dynamic algorithms with

perfect knowledge of instantaneous CSI of all network users and/or relays [7]. For instance, in [8],

the authors derive a closed-form optimal power allocation solution that requires instantaneous CSI for

multiple AF relays, while incorporating total and individual power constraints. In [9], distributed and

centralized power allocation for multiuser multi-relay AF networks is studied. Specifically, the authors

consider the problems of maximization of the minimum rate, and the weighted sum-of-rates, which

are based on perfect instantaneous CSI knowledge. In [10], a distributed iterative auction-based power

allocation mechanism is proposed for deterministic multi-source multi-relay power allocation in relay

networks, such that the network sum-rate is maximized. In particular, each source node must obtain

complete CSI in order to be able to demand relay power based on the announced relay prices. In

[11], the authors study the problem of minimizing the total transmission power subject to an outage

constraint, and minimizing the outage probability subject to total transmit powers constraints in multi-hop

multi-branch AF networks. To be specific, the authors derive asymptotically tight approximations of the

received SNR, which are then used to formulate optimization problems using geometric programming

(GP). Such GP problems are then transformed into nonlinear convex problems, which can be solved

efficiently. In [12], the authors proposed efficient power allocation schemes for multi-source multi-relay

AF networks, so as to maximize the network throughput and the minimum end-to-end SNR among

the users, and also minimize the total transmit power of all users. Particularly, the proposed schemes

are based on GP, which are transformed into equivalent convex optimization problems that can be

solved efficiently. Total power minimization subject target symbol error rate (SER) QoS requirement

is investigated in [13] for single-source multi-relay AF networks. Particularly, the authors derived closed-
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form power allocation solutions, and proposed power allocation algorithms to prolong network lifetime.

Optimal power allocation for instantaneous SNR maximization in multi-hop AF networks under short-

term (ST) and long-term (LT) power constraints is studied in [14]. Particularly, the authors illustrate

that at sufficiently high SNR values, significant performance gains in terms of outage probability can

be achieved with optimal power allocation over uniform power allocation under ST power constraint;

while under the LT power constraint, substantial performance gain can be achieved in the low as well

as high SNR regime. In [15], power allocation strategies for maximizing the end-to-end SNR, and

minimizing the total power consumption while maintaining end-to-end SNR are studied for fixed-gain

AF networks in Nakagami−m fading channels. Specifically, the formulated strategies consider the all-

participate as well as selective relaying under full and limited feedback, and are solved via convex

optimization. The authors in [16] study the problem of energy efficiency (EE) for uplink transmission in

AF orthogonal frequency division multiple-access (OFDMA) networks. Particularly, the aim is to assign

subcarriers and allocate power to mobile and relay stations so as to maximize the EE of the mobile

station (MS) with the lowest EE value. To that end, the authors formulated a primal max-min optimization

problem subject to constraints on the MSs transmit power, relay station’s transmit power and QoS of

the MSs. Such problem turned out to be NP-hard as it involved non-convex fractional mixed integer

nonlinear programming. In turn, a dual min-max optimization problem that attains the same optimal

solution of the primal problem was provided, and a modified Dinkelback algorithm was proposed to

obtain the optimal solution of the dual solution in polynomial-time complexity. Furthermore, a low-

complexity suboptimal heuristic algorithm was also proposed to balance the achievable performance and

computational complexity. In [17], the problem of joint subcarrier-relay assignment and power allocation

for multi-user two-way multi-relay OFDMA networks is studied. Specifically, the problem of sum-rate

maximization with individual power constraints is formulated as a mixed integer nonlinear programming

problem, which is asymptotically solved via a Lagrange dual decomposition method. Moreover, a low-

complexity suboptimal algorithm is proposed to trade off performance and complexity. The authors in

[18] study the SER performance of M-ary phase shift keying and M-ary quadrature amplitude modulation

of decode-and-forward (DF) networks over independent and non-identically distributed generalized fading

channels. Particularly, exact analytic expressions involving the Lauricella function are derived and solved

via a proposed computing algorithm. Moreover, asymptotic approximations at high SNR are obtained and

optimum power allocation with total sum-power constraint is formulated and solved, yielding substantial

performance enhancement over equal power allocation. Lastly, the problem of maximizing the minimum

transmission rate among multiple source-destination pairs with multiple AF relays in a cognitive radio
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network is studied in [19]. Specifically, the joint relay assignment and channel allocation max-min

rate problems for cognitive and cooperative communications (without and with network coding) are

formulated, which are proved to be NP-hard. Consequently, reformulation and linearization techniques

are applied and low-complexity algorithms are proposed to efficiently achieve high spectrum efficiency

and improved max-min transmission rates. Generally speaking, the proposed optimal power allocation

solutions/algorithms are based on instantaneous CSI, and this may not be suitable in time-varying channels

[20]. Additionally, the computational complexity and communication overheads involved in dynamic

power allocation may not be practical. Therefore, it is essential to consider power allocation strategies

that do not rely on instantaneous CSI, and still be suitable for time-varying channels, while satisfying

QoS constraints.

In this paper, power allocation over time-varying multi-user multi-relay amplify-and-forward networks

is investigated. Particularly, the power allocation problems of network sum-rate (NSR) maximization, max-

min rate (MMR) and total power minimization (TPM) are formulated as stochastic optimization problems,

subject to QoS constraints (in terms of target rate or outage probability). The stochastic optimization

problems are then transformed into optimal asymptotically convex deterministic problems at high enough

SNR, where the time-varying rate function of each source-destination pair is replaced by its “time-

average” ergodic rate function. Such transformations are based on the second-order channel statistics

only (i.e. partial CSI)1. Consequently, they can be performed efficiently in an offline manner, as opposed

to online “dynamic” power allocation, which requires complete instantaneous CSI. Our simulation results

demonstrate that the convex approximations at high enough SNR closely agree with their derived optimal

deterministic and dynamic counterparts. It should be noted that in [21], the authors study optimal power

allocation for minimizing outage probability in the high SNR region subject to total power constraint,

for the AF, DF and distributed space-time coding protocols. Particularly, convex approximations based

on mean channel gain information are provided to achieve improvements in the outage probability while

achieving significant coding gains. In [22], the authors derive an expression for the ergodic capacity

and provide an upper-bound for a single-user multi-relay AF network. After that, they propose a novel

quasi-optimal power allocation scheme that maximizes the upper-bound of the derived ergodic capacity

and conclude that the cooperative mode should only be used when the source-to-destination channel

gain is worse than that of the relay-to-destination. In [23], the performance of dual-hop MIMO relay

1The second-order channel statistics represent the mean channel gains (i.e. variances), and are assumed to encompass the

effects of high data rates, mobility and carrier frequencies.
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networks with statistical CSI is studied. Specifically, the authors derive the cumulative density function

of the received SNR and closed-form expressions for the asymptotic fully correlated and uncorrelated

scenarios. After that, a simple yet practical proportional power allocation algorithm is proposed, which

is shown to agree with the benchmark performance obtained via exhaustive search. The problem of

joint relay selection and power allocation in AF relay networks is studied in [24]. Particularly, the aim

is to minimize the upper-bounded outage probability assuming only mean CSI is known. Then, the

problem is decomposed into two parts, where a novel scheme is devised to incrementally select relays,

and then optimally allocate power to the source and relays in the network. In [25], the authors study

the achievable rate and ergodic capacity of non-orthogonal AF multi-relay networks with full CSI at the

relays. Particularly, the authors determine the optimal instantaneous power amplification coefficients for

achievable rate maximization, where the solution takes the form of an extended water-filling scheme.

Similarly, it was shown that the ergodic capacity can be obtained via an iterative water-filling-based

algorithm. After that, the authors study the capacity-achieving input covariance matrix in the high and

low SNR regimes, where it has been shown that at sufficiently high SNR, the source transmit power must

be equally distributed in all broadcasting phases; while in the low SNR regime, the source must spend

all its power on the relay with the strongest source-relay and relay-destination channels.

To the best of our knowledge, no prior work has considered the formulation and transformation of

stochastic network sum-rate maximizing and max-min rate power allocation, and total power minimization

problems for multi-user multi-relay AF networks into their deterministic representations, and provide

asymptotically convex approximations that are solvable with minimal computational complexity. More

importantly, the formulated stochastic optimization problems capture the uncertainties, randomness and

time-variations in the channel state information and incorporate them into the different power allocation

optimization problems to achieve a more robust QoS performance and significantly improve network

practicality.

The main contributions of this work are summarized as follow:

• Formulation of the network sum-rate and max-min rate power allocation, and total power minimiza-

tion over time-varying multi-user multi-relay amplify-and-forward networks as stochastic optimiza-

tion problems, and transforming them into optimal exact deterministic problems. Then, asymptoti-

cally convex approximations are provided, which are solved with minimal computational complexity.

• Comparing the convex approximate problems at high SNR with their optimal deterministic and

dynamic counterparts, and demonstrating that they closely coincide with them.

It should be noted that a conference version of this paper has been accepted for publishing, which only



6

studies the problems of network sum-rate maximization and max-min rate power allocation2. Particularly,

the work in hand is an extension of the conference paper in the formulation of the total power minimization

problem as a stochastic optimization problem, and transforming it into its optimal and approximate

deterministic counterparts. Moreover, this paper provides additional discussion and comparative results

demonstrating the applicability and potentials of the formulated asymptotically convex approximations

under the different power allocation problems.

The remainder of this paper is organized as follows. Section II presents the stochastic and deterministic

power allocation problems, while Section III provides the asymptotically convex reformulations. Section

IV presents the stochastic total power minimization formulation as well as its deterministic convex

approximation. Simulation results are presented in Section V, while conclusions are drawn in Section

VI.

II. POWER ALLOCATION FORMULATIONS

A. Network Model

Consider an orthogonal “time-slotted” uplink cooperative relay network of N source-destination pairs

and K AF relay nodes. Each source node Si has transmit power of PSi
(t), for i ∈ {1, 2, . . . , N},

while each relay Rk—for k ∈ {1, 2, . . . ,K}—allocates transmit power PRk,Si
(t) to that source node.

Let hSi,Rk
(t), hRk,Di

(t) and hSi,Di
(t) be the time-varying channel coefficients of the source-relay, relay-

destination and source-destination links of nodes Si, Rk and Di, which are modeled as zero-mean complex

Gaussian random variables with variances σ2
Si,Rk

, σ2
Rk,Di

and σ2
Si,Di

, respectively. Additionally, each

source-destination pair Si−Di is assigned a signature waveform ci(t), which allows multiuser detection

at the intended destination node [27,28]. Waveforms ci(t) and cj(t) have correlation coefficient ρi,j ,

where 0 ≤ ρi,j ≤ 1 for i ̸= j, and ρi,i = 1. For simplicity, let ρi,j = ρ, ∀j ̸= i. It is assumed that there

is a maximum power constraint Pmax per time-slot t. Thus, PSi
(t) ≤ Pmax, ∀i ∈ {1, 2, . . . , N}, and∑N

i=1 PRk,Si
(t) ≤ Pmax, ∀k ∈ {1, 2, . . . ,K}. Table I lists the main notations used in this paper.

Communication between each source-destination pair is performed over N +K time-slots and is split

into two phases, namely the broadcasting phase (of N time-slots), and the cooperation phase (of K

time-slots) [1]. Particularly, each source node Si is assigned a time-slot to broadcast its data symbol,

which is received by each relay and destination node. After that, each relay Rk—in its assigned time-

slot—forms a linearly-coded signal of all received signals and transmits it to the destination nodes, where

2A shorter “conference” version of this paper has recently been accepted for publication in the Proc. of the IEEE International

Wireless Communications and Mobile Computing (IWCMC) Conference, Paphos, Cyprus, Sept. 2016. [26].
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TABLE I

NOTATIONS

Symbol Definition

Di Destination node i

E[·] Expectation of parameter function
K Number of amplify-and-forward relays in the network
M Order of Laguerre polynomial

M(i)(z) Moment generating function of the end-to-end SNR of source-destination pair Si −Di

Mi,i(z) Moment generating function of the direct transmission SNR of source-destination pair Si −Di

Mk,i(z) Moment generating function of the cooperative transmission SNR of source-destination pair Si −Di via relay Rk

N Number of source-destination pairs in the network
N0 Noise variance
P[·] Probability of parameter event

PSi(t) Transmit power of source Si during time-slot t
PRk,Si(t) Transmit power of relay Rk allocated to source Si during time-slot t
PR,Si(t) Transmit relay power vector assigned by the K relays to source Si during time-slot t
Pmax Maximum transmit power constraint per time-slot

PrOut,i (PR,Si) Outage probability as a function of PR,Si

Rk Relay node k
Ri (PR,Si(t)) Instantaneous achievable rate of source-destination pair Si −Di as a function of PR,Si(t)

RT Target rate
Si Source node i
αm Weight factor of the Laguerre polynomial
βm Abscissas of the Laguerre polynomial
ci(t) Signature waveform assigned to source Si

hSi,Di(t) Time-varying Rayleigh fading channel coefficient between source Si and destination Di

hSi,Rk(t) Time-varying Rayleigh fading channel coefficient between source Si and relay Rk

hRk,Di(t) Time-varying Rayleigh fading channel coefficient between relay Rk and destination Di

pT Target outage probability
ν Path-loss exponent

σ2
Si,Di

Channel variance between source Si and destination Di

σ2
Si,Rk

Channel variance between source Si and relay Rk

σ2
Rk,Di

Channel variance between relay Rk and destination Di

γi(t) Instantaneous end-to-end SNR of source-destination pair Si −Di

γi,i(t) Instantaneous SNR of direct transmission between source Si and destination Di

γk,i(t) Instantaneous SNR of cooperative transmission of source-destination pair Si −Di via relay Rk

ρ Correlation coefficient of signature waveforms
ϱ Noise amplification coefficient due to the use of signature waveforms

each destination node performs multiuser detection to separate the different users’ data symbols [10,28].

The instantaneous SNR resulting at destination node Di is given by [10,27]

γi(t) = γi,i(t) +
K∑

k=1

γk,i(t)

=
PSi(t)|hSi,Di(t)|2

N0
+

K∑
k=1

1

ϱN0

PSi(t)PRk,Si(t)|hSi,Rk
(t)|2|hRk,Di(t)|2

PSi(t)|hSi,Rk
(t)|2 + PRk,Si(t)|hRk,Di(t)|2 +N0

,

(1)

where γi,i(t) is the instantaneous SNR for the direct transmission between source node Si and destination

node Di (in the broadcasting phase); while γk,i(t) refers to the instantaneous SNR of the cooperative
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transmission of source node Si’s signal to its intended destination Di via relay Rk (in the cooperation

phase). Moreover, N0 is the noise variance, while ϱ is given by

ϱ =
1 + (N − 2)ρ

1 + (N − 2)ρ− (N − 1)ρ2
, (2)

which represents the noise amplification coefficient resulting from the use of signature waveforms when

performing multiuser detection at destination node Di. It can be verified that when ρ = 0 (i.e. perfectly

orthogonal signature waveforms) then ϱ = 1; otherwise ϱ > 1. Therefore, the higher the correlation

is between the signature waveforms, the greater the noise amplification coefficient ϱ and the less the

resulting end-to-end SNR. Lastly, one must note that γi,i(t) is an exponential random variable with

average rate λSi,Di
= N0

PSi
σ2
Si,Di

.

Remark 1: Due to the strict increasing monotonicity of the SNR terms γi(t) and γk,i(t) in PSi
(t),

∀i ∈ {1, 2, . . . , N} and ∀k ∈ {1, 2, . . . ,K}, then PSi
(t) , PS = Pmax, ∀i ∈ {1, 2, . . . , N}, and ∀t ≥ 1.

The achievable rate for each source-destination pair Si −Di is given by [27]

Ri (PR,Si(t)) =
1

N +K
log2

(
1 + γi,i(t) +

K∑
k=1

γk,i(t)

)
, (3)

where PR,Si
(t) = [PR1,Si

(t), PR2,Si
(t), . . . , PRK ,Si

(t)]T . Based on Remark 1, the rate function in (3) is

a function of PRk,Si
(t), ∀k ∈ {1, 2, . . . ,K} only.

B. Network Sum-Rate Maximization

The stochastic network sum-rate power allocation (S-NSR-PA) is formulated as

S-NSR-PA:

max
∑N

i=1 E [Ri (PR,Si
(t))]

s.t.
N∑
i=1

PRk,Si(t) ≤ Pmax, ∀k ∈ {1, 2, . . . ,K}, (4a)

P [Ri (PR,Si(t)) ≤ RT ] ≤ pT , ∀i ∈ {1, 2, . . . , N}, (4b)

PRk,Si(t) ≥ 0, ∀k ∈ {1, 2, . . . ,K} and ∀i ∈ {1, 2, . . . , N}, (4c)

where RT is the target rate; while pT is the target outage probability. Moreover, E[·] and P[·] are the

expectation and probability of the parameter function/event, respectively.
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1) Average Network Sum-Rate: To simplify the analysis, the rate function in (3) can alternatively be

expressed as [29]

Ri (PR,Si(t)) =
1

(N +K) ln 2

∫ ∞

0

e−z

z

(
1− e−z(γi,i(t)+

∑K
k=1 γk,i(t))

)
dz, (5)

where the expectation of Ri (PR,Si
(t)) is written as [29]

E [Ri (PR,Si(t))] =
1

(N +K) ln 2

∫ ∞

0

e−z

z

(
1−M(i)(z)

)
dz. (6)

Additionally, M(i)(z) is given by

M(i)(z) = Mi,i(z) ·
K∏

k=1

Mk,i(z), (7)

where Mi,i(z) is given by [1]

Mi,i(z) =
1

1 + zPSσ2
Si,Di

/N0
. (8)

while Mk,i(z) is given by [30]

Mk,i(z) =
16λSi,Rk

λRk,Di

3(λSi,Rk
+ λRk,Di + 2

√
λSi,Rk

λRk,Di + z)2
×

4(λSi,Rk
+ λRk,Di

)

λSi,Rk
+ λRk,Di + 2

√
λSi,Rk

λRk,Di + z
× 2F1

(
3,

3

2
;
5

2
;
λSi,Rk

+ λRk,Di − 2
√
λSi,Rk

λRk,Di + z

λSi,Rk
+ λRk,Di + 2

√
λSi,Rk

λRk,Di + z

)
+

2F1

(
2,

1

2
;
5

2
;
λSi,Rk

+ λRk,Di − 2
√
λSi,Rk

λRk,Di + z

λSi,Rk
+ λRk,Di + 2

√
λSi,Rk

λRk,Di + z

)
 ,

(9)

where 2F1(·, ·; ·; ·) is the hypergeometric function [31], λSi,Rk
= N0ϱ

PSσ2
Si,Rk

, and λRk,Di
= N0ϱ

PRk,Si
σ2
Rk,Di

.

Hence, the approximate average network sum-rate can be shown to be [32, Lemma 1]

N∑
i=1

E [Ri (PR,Si)] =
1

(N +K) ln 2
·

M∑
m=1

αm

βm
·

[
N∑
i=1

[
1−M(i) (βm,PR,Si)

]]
, (10)

where βm and αm are the abscissas and weight factors of the Laguerre polynomial, respectively (as

given in [33, Table 25.9]), M is the order of the Laguerre polynomial, which defines the accuracy of the

approximation.
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2) Outage Probability: The approximate outage probability is expressed as [5]

PrOut,i (PR,Si) ≃
K+1∑
k=1

 K+1∏
m=1,m ̸=k

λSi,Rm,Di

λSi,Rm,Di
− λSi,Rk,Di

(1− e−λSi,Rk,Di
R̄T

)
, (11)

where R̄T = 2(N+K)RT − 1, and

λSi,Rk,Di =


λSi,Rk

+ λRk,Di = ϱN0 ·
PSσ2

Si,Rk
+PRk,Si

σ2
Rk,Di

PSPRk,Si
σ2
Si,Rk

σ2
Rk,Di

, if k ̸= K + 1

λSi,Di
= N0

PSσ2
Si,Di

, if k = K + 1

. (12)

Therefore, the deterministic network sum-rate power allocation (D-NSR-PA) optimization problem is

expressed as3

D-NSR-PA:

max 1
(N+K) ln 2 ·

∑M
m=1

αm

βm
·
[∑N

i=1

[
1−M(i) (βm,PR,Si

)
]]

s.t.
N∑
i=1

PRk,Si ≤ Pmax, ∀k ∈ {1, 2, . . . ,K}, (13a)

PrOut,i (PR,Si
) ≤ pT , ∀i ∈ {1, 2, . . . , N}, (13b)

PRk,Si ≥ 0, ∀k ∈ {1, 2, . . . ,K} and ∀i ∈ {1, 2, . . . , N}. (13c)

C. Max-Min Rate

The stochastic max-min rate power allocation (S-MMR-PA) problem is expressed as

S-MMR-PA:

max mini∈{1,2,...,N} E [Ri (PR,Si
(t))]

s.t.
N∑
i=1

PRk,Si(t) ≤ Pmax, ∀k ∈ {1, 2, . . . ,K}, (14a)

P [Ri (PR,Si(t)) ≤ RT ] ≤ pT , ∀i ∈ {1, 2, . . . , N}, (14b)

PRk,Si(t) ≥ 0, ∀k ∈ {1, 2, . . . ,K} and ∀i ∈ {1, 2, . . . , N}. (14c)

The above problem can be transformed into a deterministic max-min rate power allocation (D-MMR-PA)

optimization problem as

3A deterministic optimization problem refers to one where the expectation of the time-varying rate function of each source-

destination pair is replaced by its “time-average” ergodic rate function, and the outage probability is expressed in terms of the

second-order channel statistics instead of the instantaneous channel conditions.
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D-MMR-PA:

max η

s.t.
N∑
i=1

PRk,Si ≤ Pmax, ∀k ∈ {1, 2, . . . ,K}, (15a)

1

(N +K) ln 2
·

M∑
m=1

αm

βm
·
[
1−M(i) (βm,PR,Si)

]
≥ η, ∀i ∈ {1, 2, . . . , N}, (15b)

PrOut,i (PR,Si) ≤ pT , ∀i ∈ {1, 2, . . . , N}, (15c)

PRk,Si ≥ 0, ∀k ∈ {1, 2, . . . ,K} and ∀i ∈ {1, 2, . . . , N}, (15d)

η ≥ 0. (15e)

Remark 2: Problems D-NSR-PA and D-MMR-PA are non-convex, due to the non-convexity of

the rate function and outage probability of each source-destination pair. Hence, they can only be solved

efficiently using a global optimization software package.

III. ASYMPTOTICALLY CONVEX POWER ALLOCATION

This section provides approximate solutions to the network sum-rate maximization and max-min rate

deterministic power allocation problems in the high SNR region.

The MGF function M(i)(z) in (7)—at high enough SNR—can be approximated as [1]

M(i)(z) = Mi,i(z) ·
K∏

k=1

Mk,i(z), (16)

where

Mi,i(z) ≃
N0

zPSσ2
Si,Di

, (17)

while

Mk,i(z) ≃
ϱN0

z
·
PSσ

2
Si,Rk

+ PRk,Siσ
2
Rk,Di

PSPRk,Siσ
2
Si,Rk

σ2
Rk,Di

. (18)

Note that Mi,i(z) in (17) is independent of PRk,Si
, ∀k ∈ {1, 2, . . . ,K}.

The outage probability is tightly approximated and upper-bounded at high enough SNR as [5]

PrOut,i (PR,Si) ≃
(
R̄T

)K+1

(K + 1)!
· N0

PSσ2
Si,Di

·
K∏

k=1

ϱN0

PSσ
2
Si,Rk

+ PRk,Siσ
2
Rk,Di

PSPRk,Siσ
2
Si,Rk

σ2
Rk,Di

. (19)

Remark 3: It can be verified that M(i)(z) and PrOut,i (PR,Si
) are convex in PRk,Si

, ∀i ∈ {1, 2, . . . , N}

and ∀k ∈ {1, 2, . . . ,K} [5].
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Proof: See Appendix I.A.

At high enough SNR, the approximate deterministic network sum-rate power allocation (A-D-NSR-PA)

problem is given by

A-D-NSR-PA:

max 1
(N+K) ln 2 ·

∑M
m=1

αm

βm
·
[∑N

i=1

[
1−M(i) (βm,PR,Si

)
]]

s.t.
N∑
i=1

PRk,Si ≤ Pmax, ∀k ∈ {1, 2, . . . ,K}, (20a)

PrOut,i (PR,Si) ≤ pT , ∀i ∈ {1, 2, . . . , N}, (20b)

PRk,Si ≥ 0, ∀k ∈ {1, 2, . . . ,K} and ∀i ∈ {1, 2, . . . , N}. (20c)

Remark 4: It can be easily verified that −M(i) (βm,PR,Si
) is concave in PRk,Si

, ∀k ∈ {1, 2, . . . ,K}.

Proof: See Appendix I.B.

A. Max-Min Rate

Similarly, the approximate deterministic max-min rate power allocation (A-D-MMR-PA) problem at

high enough SNR is expressed as

A-D-MMR-PA:

max η

s.t.
N∑
i=1

PRk,Si ≤ Pmax, ∀k ∈ {1, 2, . . . ,K}, (21a)

1

(N +K) ln 2
·

M∑
m=1

αm

βm
·
[
1−M(i) (βm,PR,Si

)
]
≥ η, ∀i ∈ {1, 2, . . . , N}, (21b)

PrOut,i (PR,Si) ≤ pT , ∀i ∈ {1, 2, . . . , N}, (21c)

PRk,Si ≥ 0, ∀k ∈ {1, 2, . . . ,K} and ∀i ∈ {1, 2, . . . , N}, (21d)

η ≥ 0. (21e)

Remark 5: Problems A-D-NSR-PA and A-D-MMR-PA are convex optimization problems and thus

can be efficiently solved in polynomial-time complexity using any standard convex optimization software

package with interior-point methods [34,35].
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IV. TOTAL POWER MINIMIZATION

The stochastic total power minimization (S-TPM) problem is formulated as

S-TPM:

min
∑K

k=1

∑N
i=1 PRk,Si

(t)

s.t.
N∑
i=1

PRk,Si(t) ≤ Pmax, ∀k ∈ {1, 2, . . . ,K}, (22a)

E [Ri (PR,Si(t))] ≥ RT , ∀i ∈ {1, 2, . . . , N}, (22b)

PRk,Si(t) ≥ 0, ∀k ∈ {1, 2, . . . ,K} and ∀i ∈ {1, 2, . . . , N}, (22c)

which is transformed into a deterministic total power minimization (D-TPM) problem as

D-TPM:

min
∑K

k=1

∑N
i=1 PRk,Si

s.t.
N∑
i=1

PRk,Si ≤ Pmax, ∀k ∈ {1, 2, . . . ,K}, (23a)

1

(N +K) ln 2
·

M∑
m=1

αm

βm
·
[
1−M(i) (βm,PR,Si)

]
≥ RT , ∀i ∈ {1, 2, . . . , N}, (23b)

PRk,Si ≥ 0, ∀k ∈ {1, 2, . . . ,K} and ∀i ∈ {1, 2, . . . , N}, (23c)

which is non-convex due to the non-convexity of the rate function in (23b). However, by using (16), the

approximate deterministic total power minimization (A-D-TPM) problem at high enough SNR is written

as

A-D-TPM:

min
∑K

k=1

∑N
i=1 PRk,Si

s.t.
N∑
i=1

PRk,Si ≤ Pmax, ∀k ∈ {1, 2, . . . ,K}, (24a)

1

(N +K) ln 2
·

M∑
m=1

αm

βm
·
[
1−M(i) (βm,PR,Si)

]
≥ RT , ∀i ∈ {1, 2, . . . , N}, (24b)

PRk,Si ≥ 0, ∀k ∈ {1, 2, . . . ,K} and ∀i ∈ {1, 2, . . . , N}, (24c)

which is now a convex optimization problem.
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V. SIMULATION RESULTS

This section evaluates the formulated optimal deterministic power allocation problems and compares

them with the approximated problems and equal power allocation (EPA)4. Moreover, dynamic optimal

power allocation (Dyn-OPA) is also compared and formulated as

Dyn-OPA:

max f (R1 (PR,S1
(t)) , R2 (PR,S2

(t)) , . . . , RN (PR,SN
(t)))

s.t.
N∑
i=1

PRk,Si(t) ≤ Pmax, ∀k ∈ {1, 2, . . . ,K}, (25a)

Ri (PR,Si(t)) ≥ RT , ∀i ∈ {1, 2, . . . , N}, (25b)

PRk,Si(t) ≥ 0, ∀k ∈ {1, 2, . . . ,K} and ∀i ∈ {1, 2, . . . , N}. (25c)

where

f (R1 (PR,S1(t)) , R2 (PR,S2(t)) , . . . , RN (PR,SN
(t))) =


∑N

i=1 Ri (PR,Si(t)) , for NSR

mini∈{1,2,...,N} Ri (PR,Si(t)) , for MMR.
(26)

Additionally, the dynamic optimal total power minimization (Dyn-O-TPM) problem is expressed as5

Dyn-O-TPM:

min
∑K

k=1

∑N
i=1 PRk,Si

(t)

s.t.
N∑
i=1

PRk,Si(t) ≤ Pmax, ∀k ∈ {1, 2, . . . ,K}, (27a)

Ri (PR,Si(t)) ≥ RT , ∀i ∈ {1, 2, . . . , N}, (27b)

PRk,Si
(t) ≥ 0, ∀k ∈ {1, 2, . . . ,K} and ∀i ∈ {1, 2, . . . , N}. (27c)

The network topology over an area of 2.5m × 3.5m is illustrated in Fig. 1, which consists of N = 3

source-destination pairs and K = 2 relay nodes. Moreover, the channel gain between any two nodes

is given by σ2 = d−ν , where d and ν are the inter-node distance and path-loss exponent, respectively.

4EPA implies that in each time-slot of the cooperation phase, the total power constraint Pmax of each relay Rk is equally

split across the N source nodes. That is, PRk,Si = Pmax/N , ∀i ∈ {1, 2, . . . , N} and ∀k ∈ {1, 2, . . . ,K}.
5The deterministic optimal, approximate and dynamic optimization problems are solved via MIDACO, with tolerance set to

0.0001 [37].
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Moreover, the simulations are averaged over 106 independent runs with randomly generated channel

coefficients that change every time-slot6. The simulation parameters are summarized in Table II.

TABLE II

SIMULATION PARAMETERS

Parameter Pmax ν ρ RT

Value 150 mW 2.5 0.15 0.5 Bits/s/Hz

Fig. 1. Network Topology
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Fig. 2. Achievable Rate: Approximation vs. Simulation - EPA

6Dynamic optimal power allocation and total power minimization are performed at the end of the broadcasting phase (i.e.

before the cooperation phase), and assumed to be achieved via a centralized controller with perfect CSI.
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Fig. 2 demonstrates the average rate per source-destination pair as well as the average network sum-rate

under relay equal power allocation (EPA) and for different orders of approximation M . One can see that

source-destination pair S1−D1 achieves the highest rate, when compared with the S2−D2 and S3−D3

pairs. This is explained by noting that nodes S1 and D1 are relatively closer to each other than the nodes

of the other two pairs. Additionally, nodes S1 and D1 are relatively closer to relays R1 and R2 than the

other source/destination nodes, which implies less path-loss and channel noise. This also explains why the

pair S3 −D3 achieves the lowest average rate. It is also clear that increasing the order of approximation

M improves the accuracy of the average rate of each source-destination pair, in comparison with the

simulated rates. For example, M = 256 suffices for accurate average rate approximation at SNR = 20

dB; while M = 1024 is sufficient at SNR = 30 dB (i.e. higher values of SNR require greater values of

M ).
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Fig. 3. Outage Probability - EPA

Fig. 3 illustrates the simulated outage probability per source-destination pair under EPA, in comparison

with the theoretical approximate and upper-bound outage probabilities, as given by (13) and (21),

respectively. Clearly, the theoretical approximate and upper-bound outage probabilities agree with their

simulated counterpart at SNR = 30 dB, for all source-destination pairs. Moreover, the pair S3 − D3

achieves the highest outage probability of 4 × 10−5, which agrees with the observation that this pair

achieves the lowest average rate.

In Fig. 4, the average network sum-rate of the different power allocation problems are compared at

SNR = 30 dB, when pT = 10−5 and M = 1024. It is clear that the convex approximate problems

A-D-MMR-PA and A-D-NSR-PA agree with their optimal counterparts D-MMR-PA and D-NSR-PA
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Fig. 4. Comparison of Network Sum-Rate - pT = 10−5, SNR = 30 dB and M = 1024

to within 0.03 bits/s/Hz. Moreover, the average network sum-rate under the NSR-PA problems is higher

than their MMR-PA counterparts. Additionally, it is evident that the network sum-rates resulting from

the Dyn-MMR-OPA and Dyn-NSR-OPA problems are superior to their deterministic counterparts, and

this is due to the fact that they relay on complete instantaneous CSI, rather than partial CSI. Lastly,

one can see that EPA is superior to the deterministic MMR-PA problems and yields almost the same

network sum-rate as the dynamic MMR-PA problem. This is because the MMR-PA problems tend to

make the rates of the different source nodes equal, which poses a tradeoff between the network sum-rate

and fairness.

Fig 5a presents the average rate per source-destination pair under the different power allocation

problems, where it can be seen that the rates are almost equal under the MMR-PA problems, as expected.

On the other hand, the pair S1 −D1 achieves the highest average rate under the NSR-PA problems, as

noted before. Moreover, the dynamic power allocation problems yield higher rate per source-destination

pair than their deterministic counterparts. Fig. 5b illustrates the outage probability per source-destination

pair, where it is evident that all the power allocation problems closely satisfy the target outage probability

pT . 10−5 for all source-destination pairs, except for the pair S3 −D3 under the EPA (as noted in Fig.

3). Finally, the NSR-PA problems achieve the lowest outage probability while satisfying the target outage

probability pT for all pairs, when compared with the other problems.

Fig. 6 demonstrates the minimum total power required to satisfy a target rate RT under the exact

deterministic total power minimizing problem D-TPM, its asymptotically convex counterpart A-D-TPM,

and dynamic optimal total power minimizing problem Dyn-O-TPM. Clearly, one can see that for the

deterministic problems for target rates RT = 1.5 and RT = 1.6 bits/s/Hz, the minimum total power

is almost equal, with negligible difference. Additionally, it can be seen that the minimum total power
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Fig. 6. Minimum Total Power for (a) RT = 1.5 Bits/s/Hz, and (b) RT = 1.6 Bits/s/Hz - SNR = 30 dB and M = 1024

required to satisfy the target rate of RT = 1.5 bits/s/Hz (see Fig. 6a) is less than that when RT = 1.6

bits/s/Hz (see Fig. 6b) under the different problems. This is because the lower the target rate RT is,
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the smaller the amount of power required to satisfy it. Finally, the Dyn-O-TPM achieves the lowest

minimum total power among the different problems and under both target rates. Again, this is attributed

to the utilization of complete CSI for total power minimization.
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Fig. 7. Achievable Rate Per Source-Destination Pair for (a) RT = 1.5 Bits/s/Hz, and (b) RT = 1.6 Bits/s/Hz - SNR = 30 dB

and M = 1024

In Fig. 7, the achievable rates per source-destination pair for different target rates under problems

D-TPM, A-D-TPM and Dyn-O-TPM are shown. Specifically, in Fig. 7a (Fig. 7b), one can see that all

source-destination pairs satisfy the target rate RT = 1.5 bits/s/Hz (RT = 1.6 bits/s/Hz). Additionally, one

can see that the achievable rate of the pair S1 −D1 when RT = 1.5 bit/s/Hz is higher than that when

RT = 1.6 bits/s/Hz. This is attributed to the fact that some of the transmit power allocated to the pair

S1−D1 when RT = 1.5 bits/s/Hz is re-allocated to pairs S2−D2 and S3−D3 in order for them to satisfy

the higher target rate of RT = 1.6 bits/s/Hz, which in turn results in a dip to the rate of the S1−D1 pair.

Also, one can see that the resulting rates of each source-destination pair under the D-TPM problem is only

marginally less than those of the A-D-TPM problem, since the total power under the former problem

is marginally less than the latter problem (see Fig. 6). However, all source-destination pairs satisfy

the target rates. This negligible difference is due to the asymptotic approximation. Finally, the rate per

source-destination pair under the Dyn-O-TPM problem is less than their deterministic counterparts, since

it requires the least amount of power to satisfy the target rates while relaying on complete instantaneous

CSI.

In order to quantitatively demonstrate the applicability of the formulated convex approximate power
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allocation problems, three new comparison metrics are defined; the average network sum-rate efficiency

(A-NSR-E), the average minimum total power efficiency (A-MTP-E), and the average achievable rate

efficiency (A-AR-E). Particularly, the A-NSR-E, A-TMP-E, and A-AR-E metrics are expressed as

A-NSR-E =
Average Network Sum-Rate of Approximate Deterministic Power Allocation

Average Network Sum-Rate of Dynamic Optimal Power Allocation
× 100, (28)

A-MTP-E =
Average Minimum Total Power of Dynamic Optimal Power Allocation

Average Minimum Total Power of Approximate Deterministic Power Allocation
× 100, (29)

and

A-AR-E =
Average Achievable Rate of Dynamic Optimal Power Allocation

Average Achievable Rate of Approximate Deterministic Power Allocation
× 100. (30)

Fig. 8 illustrates the average network sum-rate efficiency of the A-D-MMR-PA and A-D-NSR-PA

problems (derived from Fig. 4) when compared with the Dyn-MMR-OPA and Dyn-NSR-OPA problems,

respectively. It is clear that the approximate deterministic power allocation problems achieve efficiencies

not less than 96%, which proves that the convex approximate solutions closely coincide with their dynamic

counterparts.
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Fig. 8. Average Network Sum-Rate Efficiency - pT = 10−5, SNR = 30 dB and M = 1024

The average minimum total power efficiency of the approximate deterministic total power minimizing

problem A-D-TPM relative to the dynamic optimal total power minimizing problem Dyn-O-TPM (as

per Fig. 6) is illustrated in Fig. 9. Clearly, the A-MTP-E is 93% and 98.5% for RT = 1.5 and RT = 1.6

bits/s/Hz, respectively. Therefore, it is evident that the approximate deterministic problem agrees with its
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dynamic counterpart. Finally, in Fig. 10, the average achievable rate efficiency per source-destination under

the A-D-TPM problem (as per Fig. 7) in comparison with the Dyn-O-TPM problem is demonstrated.

Particularly, Fig. 10a illustrates the A-AR-E for each source-destination pair when RT = 1.5 bits/s/Hz,

where it can be seen that no pair achieves an efficiency less than 98%. A similar observation is noted in

Fig. 10b for RT = 1.6 bits/s/Hz, where it is evident that no pair achieves a relative efficiency less than

98.5% when compared with the dynamic problem. Hence, the afore-presented results demonstrate that the

approximate deterministic power allocation problems provide average network sum-rate, minimum total

power and achievable rate results that are comparable to those obtained via their dynamic counterparts.
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The presented results demonstrate that the approximated average rate function of each source-destination

pair is highly dependent on the order of approximation M . In fact, M must be large enough to yield

faithful representation of the average rate of each source-destination pair. Moreover, it is intuitive that the

higher the value of M is, the more computationally-intensive the solution of the approximate convex

optimization problems. Additionally, it must be noted that using smaller values of M would yield

solutions with less computational-complexity; however, such solutions would be far from optimal, in

which case using equal power allocation would be more attractive and reasonable. It is also arguable

that large values of M may entail complex computations and introduce significant delays. However,

recently, primal-dual interior-point (and several other) methods have been proved to be extremely efficient

in handling nonlinear large-scale convex problems, with polynomial-time complexity results obtained

via reliable and robust software implementations (readily available in commercial and noncommercial

packages) [35]. Particularly, such methods are able to solve dense problems of thousands of variables

and over ten thousand terms almost as fast as linear programming problems [36]. Therefore, the derived
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convex approximate deterministic power allocation problems can be efficiently solved in polynomial-

time complexity via recent software optimization packages (as per Remark 5). Finally, it is noteworthy

that the optimal deterministic power allocation problems took much longer to converge than the convex

approximate ones. One must also keep in mind that these approximate convex problems are only solved

once and in an offline manner, in the network set-up phase. Thus, they can be solved with minimal

computation complexity, without introducing unnecessary communication overheads. On the other hand,

the dynamic optimal power allocation problems must be re-executed every time the channel coefficients

change. Although such problems can be shown to be convex (as verified in [9]), solving them under

time-varying channel conditions is both computationally-expensive and communication-intensive, as they

constantly require perfect global instantaneous CSI. Hence, the convex approximate power allocation

problems are particularly more attractive in the case of mobility and rapidly changing channel conditions.

VI. CONCLUSIONS

In this paper, power allocation for time-varying multi-user multi-relay amplify-and-forward networks

is studied. Specifically, stochastic optimization for network sum-rate maximization, max-min rate and

total power minimization problems—subject to QoS constraints—have been formulated and transformed

into deterministic asymptotically convex problems at high enough SNR. Our simulation results illustrate
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that the convex approximated problems closely agree with their optimal deterministic and dynamic

counterparts. Specifically, the deterministic approximate problems have been shown to yield network

sum-rates that are comparable with the deterministic as well as dynamic problems, while meeting the

target outage probability per source-destination pair. Moreover, although the dynamic problems yield

the minimum total relay transmit power when compared with their deterministic exact and approximate

counterparts, the difference is negligibly small. Finally, if the communication and computational overheads

associated with obtaining complete instantaneous CSI are factored into the performance of the dynamic

power allocation problems, the difference in performance—when compared with the approximate convex

problems—would be even less.

VII. APPENDIX I

A. Proof of Convexity

It should be noted that Mi,i(z) in (17) is independent of PRk,Si
, ∀k ∈ {1, 2, . . . ,K}. Therefore, to

prove the convexity of each MGF function Mk,i(z), ∀k ∈ {1, 2, . . . ,K}, one must show that the second

derivative is greater than zero ∀PRk,Si
> 0. Specifically, it is straightforward to show that

∂Mk,i(z)

∂PRk,Si

= −ϱN0

z
· 1

σ2
Rk,Di

P 2
Rk,Si

< 0, (31)

and

∂2Mk,i(z)

∂P 2
Rk,Si

=
ϱN0

z
· 2

σ2
Rk,Di

P 3
Rk,Si

> 0. (32)

Clearly, the MGF Mk,i(z) is a decreasing function (as the first derivative is negative) and strictly convex

(since the second derivative is strictly positive ∀PRk,Si
> 0).

Now, in order to show that M(i)(z) is (strictly) convex in PRk,Si
, ∀k ∈ {1, 2, . . . ,K}, the Hessian

matrix of all the second derivatives must be examined. For simplicity and mathematical traceability,

assume there are only K = 2 relays, namely Rk and Rl for k ̸= l. Hence, the Hessian matrix is written

as

H (PRk,Si , PRl,Si) =

 ∂2M(i)(z)

∂P 2
Rk,Si

∂2M(i)(z)

∂PRk,Si
∂PRl,Si

∂2M(i)(z)

∂PRl,Si
∂PRk,Si

∂2M(i)(z)

∂P 2
Rl,Si


= Mi,i(z) ·

(
ϱN0

z

)2

·

 PSσ2
Si,Rl

+PRl,Si
σ2
Rl,Di

PSPRl,Si
σ2
Si,Rl

σ2
Rl,Di

· 2
σ2
Rk,Di

P 3
Rk,Si

1
P 2

Rk,Si
P 2

Rl,Si
σ2
Rk,Di

σ2
Rl,Di

1
P 2

Rk,Si
P 2

Rl,Si
σ2
Rk,Di

σ2
Rl,Di

PSσ2
Si,Rk

+PRk,Si
σ2
Rk,Di

PSPRk,Si
σ2
Si,Rk

σ2
Rk,Di

· 2
σ2
Rl,Di

P 3
Rl,Si

 .

(33)
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The MGF function M(i)(z) is (strictly) convex if and only if H (PRk,Si
, PRl,Si

) is positive (definite)

semidefinite [34]. It is well-known (By Young’s theorem [38]) that the Hessian of any function for which

all second partial derivatives are continuous is symmetric for all values of the argument of the function.

Also, all the diagonal elements are positive (since ∂2M(i)(z)
∂P 2

Rk,Si

> 0 and ∂2M(i)(z)
∂P 2

Rl,Si

> 0). Also, it can be

verified that ∂2M(i)(z)
∂P 2

Rk,Si

∂2M(i)(z)
∂P 2

Rl,Si

−
(

∂2M(i)(z)
∂PRl,Si

∂PRk,Si

)2
> 0. Hence, M(i)(z) is strictly convex in PRk,Si

,

and PRl,Si
. In general, M(i)(z) can be proved to (strictly) convex by verifying that it is positive definite

in PRk,Si
, ∀k ∈ {1, 2, . . . ,K}.

Finally, the outage probability PrOut,i can also be proved to be convex as it has a similar form to

M(i)(z). Therefore, the proof of convexity for PrOut,i is eliminated for brevity. �

B. Proof of Concavity

With respect to the term −M(i) (βm,PR,Si
) in the objective function of (20), and constraints (21b)

and (24b), it is well-known that a function f(x) is (strictly) convex if and only if −f(x) is (strictly)

concave [34]. Additionally, convexity/concavity is preserved under non-negative scaling and summation.

Therefore, −M(i) (βm,PR,Si
) is strictly concave, since it has already been proved that M(i) (βm,PR,Si

)

is strictly convex. �
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