
April 2018

http://www.midaco-solver.com

— User Manual —

Version 6.0

Abstract

MIDACO is a numerical high-performance solver for single- and multi-objective optimization.
It is constructed as general-purpose software and can be applied to a wide range of optimiza-
tion problems. MIDACO is based on a derivative-free, evolutionary hybrid algorithm that
treats the objective and constraint functions as black-box which may contain critical function
properties like non-linearity, non-convexity, discontinuities or even stochastic noise. Decision
variables may be continuous, discrete (e.g. binary) or both (called mixed integer). The soft-
ware can handle problems with thousands of variables and hundreds of objectives. MIDACO
offers (massive) parallelization options which is particularly beneficial for CPU-time intensive
applications (e.g. numerical simulations), where a single evaluation may take significant time.

Quick Jump Menu

Introduction

Optimization Problem

MIDACO Screen and Solution

MIDACO Stopping Criteria

MIDACO Parameter

Multi-Objective Optimization

Parallelization

IFLAG Messages

http://www.midaco-solver.com

Contents
Overview 3

Introduction 4

1 Optimization Problem 8
1.1 Problem Dimensions, Bounds and Starting Point . 9
1.2 Problem Function Call . 10
1.3 Passing Additional Input/Output Arguments . 11
1.4 Verifying a Problem Implementation . 11

2 MIDACO Screen and Solution 12
2.1 PRINTEVAL and SAVE2FILE . 14
2.2 Solution History File . 14

3 MIDACO Stopping Criteria 15
3.1 Hard Limit Criteria . 15

3.1.1 MAXTIME . 15
3.1.2 MAXEVAL . 15

3.2 Algorithmic Criteria . 16
3.2.1 FSTOP . 16
3.2.2 ALGOSTOP . 16
3.2.3 EVALSTOP . 16

3.3 Example Scenarios . 17
3.3.1 Single Evaluation . 17
3.3.2 CPU-Time expensive application . 17
3.3.3 CPU-Time cheap application . 18
3.3.4 Infinite Run . 18

4 MIDACO Parameter 19
4.1 PARAM(1) : ACCURACY . 19
4.2 PARAM(2) : SEED . 19
4.3 PARAM(3) : FSTOP . 19
4.4 PARAM(4) : ALGOSTOP . 20
4.5 PARAM(5) : EVALSTOP . 20
4.6 PARAM(6) : FOCUS . 20
4.7 PARAM(7) : ANTS . 20
4.8 PARAM(8) : KERNEL . 21
4.9 PARAM(9) : ORACLE . 21
4.10 PARAM(10) : PARETOMAX . 22
4.11 PARAM(11) : EPSILON . 22
4.12 PARAM(12) : BALANCE . 22
4.13 PARAM(13) : CHARACTER . 23

1

5 Multi-Objective Optimization 24
5.1 The Multi-Objective Progress (PRO) Function . 26

5.1.1 Set BALANCE exclusively to one objective 26
5.2 The BALANCE parameter . 26

5.2.1 Disable full front search capability . 28
5.3 Pareto Front Data . 29
5.4 Number of Pareto Points . 30

5.4.1 Reduced filtering for many-objective optimization 30

6 PlotTool 31
6.1 Values, Colors, Colormaps and LaTeX support . 31
6.2 Additional Data Files and Background position . 31
6.3 Solution export and re-import . 32
6.4 Save, load and reset . 32
6.5 Live mode . 32
6.6 Zooming . 32
6.7 Customized MIDACO colormap . 33

7 Parallelization 34
7.1 Running MIDACO in parallel . 35
7.2 Parallelization overhead . 35

8 Tips & Tricks 36
8.1 Constraint Handling . 36
8.2 Highly nonlinear problems . 37
8.3 Large-Scale Problems . 37
8.4 CPU-Time expensive applications . 37
8.5 Solving non-linear equation systems . 38
8.6 Multi-modal optimization . 38
8.7 Submitting several starting points . 38
8.8 Parallel-Overclocking with MIDACO . 39

9 IFLAG Messages 40
9.1 Solution Messages (IFLAG = 1 ∼ 9) . 40
9.2 Warning Messages (IFLAG = 10 ∼ 99) . 40
9.3 Error Messages (IFLAG = 100 ∼ 999) . 41

References 42

2

[M]IDACO-SOLVER User Manual Page 3

Overview
The key facts on MIDACO:

• MIDACO is a solver for global optimization problems

– Single- and multi-objective optimization
– Continuous, discrete/combinatorial and mixed integer variables
– Constrained and unconstrained problems

• Evolutionary hybrid algorithm

– Fundamentally based on the Ant Colony Optimization (ACO) metaheuristic
– Internally hybridized with a backtracking line-search for fast local convergence
– Objective and constraints may be linear or non-linear (differentiability not required)
– Black-box solver: Objective and constraint functions may be unknown (e.g. simulations)

• Large scale capability

– MIDACO solves problems with up to 100,000 variables
– MIDACO can handle up to thousands of constraints and hundreds of objectives

• Parallelization

– MIDACO features various parallelization schemes in several programming languages
– Capable of massive parallelization with thousands of cores/threads (incl. GPGPU)

• Languages

– Excel, VBA, Java, C#, R, Matlab, Octave, Python, Julia, C/C++, Fortran and more...

• Source code

– Extensively tested and constantly improved for over 10 Years

– Super lightweight (∼200kb) compressed ANSI-C (midaco.c) or Fortran code (midaco.f)
– Completely self-sufficient source code (no third-party dependencies)
– Compiles and runs on all platforms, incl. Win/Mac/Unix and web-servers
– Very easy to use and embed

• Record solutions

– MIDACO holds several records on interplanetary space trajectory benchmarks

• Background

– Developed in collaboration with the European Space Agency (ESA)
– Extended with support of the Japanese Space Exploration Agency (JAXA)

[M]IDACO-SOLVER User Manual Page 3

[M]IDACO-SOLVER User Manual Page 4

Introduction
MIDACO is a software tool for numerical optimization. The MIDACO algorithm is constructed
as general-purpose solver for single- and multi-objective optimization problems. A special
feature of MIDACO is its capability to handle (constrained) mixed integer nonlinear programming
(MINLP) problems. The term mixed integer refers here to optimization problems where some
decision variables are of continuous type (like 1.23 or 4.56) while others are of discrete type (like
1, 2 or 3). The mathematical formulation of the general multi-objective MINLP considered by
MIDACO is stated as follows:

Minimize f1(x), f2(x), ..., fO(x)

subject to: gi(x) = 0, i = 1, ...,me

gi(x) ≥ 0, i = me + 1, ...,m

xl ≤ x ≤ xu (box constraints)

In above problem formulation, the vector f1,...,O(x) denotes the objective functions and the vector
g1,...,m(x) denotes the constraint functions. Without loss of generality, all objectives are subject to
minimization. The first 1, ...,me values of the constraint vector g(x) represent equality constraints,
while the remaining me + 1, ...,m values represent in-equality constraints. The vector x of decision
variables contains continuous variables as well as discrete variables (also called integer, categorical
or combinatorial variables), whereas the continuous ones are stored first and the discrete ones
are stored last. Furthermore, some box constraints as lower bounds xl and upper bounds xu are
assumed on the decision variables x.

MIDACO solves above multi-objective MINLP by combining an extended evolutionary Ant Colony
Optimization (ACO) [34] algorithm with the Oracle Penalty Method [36] for constrained handling.
The ACO algorithm within MIDACO is based on so called multi-kernel gaussian probability density
functions (PDF’s), which generate samples of iterates (also called ants or individuals). For integer
decision variables, a discretized version of the PDF is applied (see [34]). Figure 1 illustrates a
Gauss PDF with three individual kernel PDF’s for a continuous (left) and integer (right) domain.

Figure 1: Continuous (left) and discretized (right) multi-kernel Gauss PDF

[M]IDACO-SOLVER User Manual Page 4

[M]IDACO-SOLVER User Manual Page 5

Constraints are handled within MIDACO by the Oracle Penalty Method which is an advanced
method especially developed for metaheuristic search algorithms (like ACO, GA or PSO). This
method aims on finding the global optimal solution by using a parameter called Oracle (or
Omega in [36]), which corresponds directly to the objective function value f(x). The method is
self-adaptive and therefore MIDACO can also be classified as a self-adaptive algorithm. Figure
2 illustrates the shape of the extended oracle penalty function depending on the objective func-
tion value f(x) and the residual value res(x), which represents the constraint violation of g(x)
(measured in the commonly used L1-norm).

Figure 2: Shape of the extended oracle penalty function

Like the majority of evolutionary optimization algorithms, MIDACO considers the objective f(x)
and constraint g(x) functions as black-box functions. This means that for some input vector
x only the returning objective f(x) and constraint g(x) values are recognized by MIDACO. No
particular knowledge on how the objective and constraint function are actually calculated is re-
quired by MIDACO. Consequently the objective and constraint functions may exhibit any critical
function property, like (high) non-linearity, non-convexity, non-smoothness, non-differentiability,
discontinuities and even stochastic noise.

This black-box concept gives the user absolute freedom to formulate the problem in any de-
sired way. For example, the problem formulation may contain any kind of programming statement
(like if-clauses or subroutine calls) or even call exeternal programs (like Simulink or Text-I/O).

[M]IDACO-SOLVER User Manual Page 5

http://www.midaco-solver.com/index.php/more/oracle-penalty-method
https://en.wikipedia.org/wiki/Lp_space#When_0_.3C_p_.3C_1
https://en.wikipedia.org/wiki/Simulink
http://www.midaco-solver.com/index.php/download/text-i-o

[M]IDACO-SOLVER User Manual Page 6

In order to enhance its overall performance, MIDACO implements many heuristics and is internally
hybridized with a pseudo-gradient based backtracking line-search for fast local convergence. How-
ever, like all heuristic algorithms, MIDACO does not provide a guarantee for reaching the global
optimal solution. The main motivation behind MIDACO is to provide a robust software tool that
can optimize complex real world applications in a reasonable time to a reasonably good solution.
Extensive numerical test show (see [37], [36] and especially [44]) that MIDACO is able to obtain
global optimal solutions fast and reliable for a large set of MINLP benchmark problems. Numer-
ical comparisons of MIDACO with established deterministic MINLP algorithms can be found for
example in [37]. Numerical comparisons of MIDACO with stochastic search algorithms (including
genetic algorithms, scatter search, variable neighborhood and covariance matrix based search) can
be found for example in [34], [35] or [40]. A collection of general global optimization problems (in-
cluding well known NLP benchmarks like Rosenbrock, Ackley or Rastrigin) that can be solved by
MIDACO are available at the MIDACO benchmark website. Note that the MIDACO run-times and
capabilities (e.g. number of objectives, number of variables and number of constraints) considered
at the MIDACO benchmark website are at the state-of-the-art in evolutionary computing,
which is particular true for its MINLP and large-scale performance with thousands of variables.

As a general-purpose solver, MIDACO can be applied to a wide range of optimization problems.
On the MIDACO applications website some examples of MIDACO utilizations are presented for
interplanetary space trajectory design [18], [38], [41], [42], construction and control of launch
vehicles [39], operation of satellite constellations [45], low-thrust orbit transfer optimization [5],
cubesat deployment trajectory design [26], structural optimization of aircraft frames [50], aircraft
battery optimization [4], passenger and aircraft fleet allocation [30], attitude control of quadrotors
[19], chemical plant layout [35], [40], [16], waste water treatment [35], water supply networks [11],
optimal camera placement [20], soil parameter optimization [48], meta-material fabric design [14],
distance-to-default models in finance [3], [24], sales forecasting [13], wireless network telecommuni-
cation [2], [6], [7], [8], [9], [10], [29], network structural vulnerability [17], structural optimization of
submarines [51], parameter optimization in bio-technology [32], neuroscience [25], filter design for
mitigating harmonics [22], [23], forestry forecasting [12], economic analysis [47], car belt conveyors
optimization [28], automotive industry planning [1], [15], electric drives for traction applications
[53], optimization of combined cycle power plants [27], CO2 power cycle design [52], low-carbon
energy portfolio optimization [49], oilfield operation [31] or natural gas plant optimization [46].

For CPU-time expensive problems (this means that a single evaluation of the objective and/or
constraint functions requires a significant amount of time), MIDACO offers an efficient paralleliza-
tion strategy: MIDACO allows to evaluate several solution candidates in parallel. This strategy
is also known as co-evaluation or fine-grained parallelization. This strategy can significantly re-
duce the overall optimization time. The parallelization strategy in MIDACO is implemented by
reverse communication which is a robust and portable concept that can scale up to thousands
of threads/cores. Due to this concept, MIDACO is able to offer its parallelization strategy in
several programming languages for various parallelization schemes, including Fortran and C/C++
(openMP, openMPI, GPGPU), Matlab (parfor), R (dopar), Java (Fork/Join) or Python (multipro-
cessing, mpi4py, spark). Easy to use example templates for MIDACO running with parallelization
can be found on the MIDACO parallelization website.

[M]IDACO-SOLVER User Manual Page 6

https://en.wikipedia.org/wiki/Line_search
http://www.midaco-solver.com/index.php/about/benchmarks
http://www.midaco-solver.com/index.php/about/benchmarks
http://www.midaco-solver.com/index.php/about/applications
http://blog.nag.com/2010/01/reverse-communication.html
http://www.midaco-solver.com/index.php/more/parallelization

[M]IDACO-SOLVER User Manual Page 7

For multi-objective optimization problems, MIDACO applies the recently introduced Utopia-
Nadir-Balance [43] concept, which was particular developed for many-objective problems arising in
(aero)space applications. Many-objective optimization problems differ from multi-objective ones in
such regard, that they consider four or more objectives. The Utopia-Nadir-Balance concept differs
from traditional multi-objective approaches in such regard, that it concentrates the algorithmic
search effort on a particular area of the pareto front. By default, this is the central (or middle) part
of the pareto front, as this part provides the best equally balanced trade-off between all individual
objective functions. However, tuning theBALANCE parameter, users can freely change the focus
to any other part of the pareto front. The main advantage of the Utopia-Nadir-Balance is that
the most desired part of the pareto front is normally reached faster and explored in more depth
as with traditional methods (like non-dominated sorting), which treat all parts of the pareto front
with equal importance. The Utopia-Nadir-Balance concept works on all kinds of pareto fronts, may
them be convex, concave, mixed or separated, and has been tested successfully with up to some
hundreds of objectives (see MIDACO benchmark website). Below is an example plot of applying
MIDACO on ESA’s Cassini1 [18] space mission benchmark with four objectives. In below plot the
BALANCE has been set on the first objective (Propulsion ∆V → displayed on the x-axis) and it
can be observed from the last 30,000 evaluation how MIDACO concentrates its search effort on
that part of the pareto front, which contains the solutions with the lowest value in such regard.

The scope of this user manual is to provide practical guidelines on how to setup and solve an
optimization problem with the MIDACO software. Readers with a deeper interest in the theoretic
details of the ACO algorithm within MIDACO can find more information in several publications
(e.g. [34] or [35]). Detailed information on the development and properties of the oracle penalty
method can be found in [36] or on the Oracle Penalty Method website.

[M]IDACO-SOLVER User Manual Page 7

http://www.midaco-solver.com/index.php/about/benchmarks/benchmarks-mo
http://www.midaco-solver.com/index.php/more/oracle-penalty-method

[M]IDACO-SOLVER User Manual Page 8

1 Optimization Problem
This section explains how an optimization problem must be presented to MIDACO. The MIDACO
algorithm considers an optimization problem in its most fundamental form: A black-box which
returns for some input variables X the corresponding objective function values F(X) and constraint
function values G(X). This black-box concept is commonly used in evolutionary algorithms and
gives the user complete freedom to define and calculate the objective and constraint values in
whatever form is preferred, including subroutines calls and even external subprograms. Due to
this black-box concept it is furthermore allowed that the objective and constraint functions have
critical properties (like high non-linearity, discontinuity or stochastic noise) or that their actual
mathematical formulation is truly unknown (e.g. simulation codes).

In case of mixed integer problems, where continuous and discrete (also called integer) variables are
present simultaneously, the continuous variables are stored first in the vector of variables X, while
the discrete ones are stored last in X. The distinction between equality and inequality constraints
in the constraints vector G(X) is handled the same way: The equality constraints are stored
first, the inequality constraints are stored last in the constraints vector G. As example, consider a
constrained mixed integer problem with the following problem dimensions:

N = 10 M = 5
NI = 4 ME = 3

where:

N : Number of variables (in total)
NI : Number of integer variables
M : Number of constraints (in total)
ME : Number of equality constraints

then the distinction between continuous and integer variables in X is as follows:

and the distinction between equality and inequality constraints in G is as follows:

[M]IDACO-SOLVER User Manual Page 8

[M]IDACO-SOLVER User Manual Page 9

Some lower and upper bounds (XL and XU) for the decision variables X must be provided for
any problem. A starting point X (also called initial solution or initial point) must be provided
as well, however this can be any point (vector of decision variables X) that lies inbetween the
bounds XL and XU. By default, the lower bounds are assumed as starting point in all example
problems provided with MIDACO. In general it is recommended, to keep the search space (defined
by XL and XU) as small as possible, as MIDACO will explore the entire search space (Hint: Use
the BOUNDS-PROFIL to identify, where a reduction of the search space might be possible). In
contrast to this, the starting point is normally not a critical issue for MIDACO.

In case the starting point X violates its lower or upper bound, MIDACO will raise the error message
IFLAG=204 or IFLAG=205 respectively. In case integer variables the corresponding lower and
upper bound value must also be a discrete value. In case the starting point X has some variables
declared as integer type but those variables have a continuous value (e.g. 0.123), MIDACO will
raise error message IFLAG=881. In case the bound value for an integer variable is a continuous
value (e.g. 0.123) MIDACO will raise error message IFLAG=882 or IFLAG=883.

Note: MIDACO will always respect the integer/discrete type of variables. This means
that MIDACO will never try to submit a continuous value for an integer type declared X variable
for evaluation to the problem function. This is an important feature that distinguishes the MI-
DACO algorithm from classical MINLP algorithms (like Branch & Bound) which require the so
called relaxation of integer variables, which is a temporary violation of their integer type into the
continuous domain during the optimization process.

1.1 Problem Dimensions, Bounds and Starting Point

This subsection illustrates how to declare the dimensions of the optimization problem, the lower
and upper bounds and the starting point for the decision variable vector X. The problem di-
mensions refer there to the size of the F, G and X arrays. Below Matlab screenshot from the
example_MINLPc.m illustrates a problem setup with 1 objective function and 4 variables, two of
them of integer/discrete type. It furthermore considers 3 constraints, one of them of equality type:

[M]IDACO-SOLVER User Manual Page 9

[M]IDACO-SOLVER User Manual Page 10

1.2 Problem Function Call

This subsection discusses the software function call to the optimization problem. As explained
above, the only three elements that need to be communicated between MIDACO and the opti-
mization problem are the vector of decision variables X, the vector of objective functions F(X)
and the vector of constraint values G(X). In the example problems distributed on the MIDACO
website, those problem function calls are given by their programming language as follows:

Matlab : [f, g] = problem_function(x)
Python : problem_function(x) (return f, g)
Julia : problem_function(x) (return f, g)
R : problem_function < − function(f,g,x)
C/C++ : problem_function(double *f, double *g, double *x)
Fortran : PROBLEM_FUNCTION(F,G,X)
VBA : PROBLEM_FUNCTION_VB(X,F,G)
C# : blackbox(double[] f, double[] g, double[] x)
Java : blackbox(double[] f, double[] g, double[] x)

Below Matlab screenshot from the example_MINLPc.m illustrates the problem_function setup,
in which for the input vector of decision variables x some calculation is performed to generate a
single objective value f(1) and three constraint function values g(1), g(2) and g(3).

Note that the vector index i for the F, G and X arrays may start with i = 1 in some languages
(e.g. Matlab, R, Fortran) while it starts with i = 0 in other languages (e.g. C++, Python, Java).

[M]IDACO-SOLVER User Manual Page 10

[M]IDACO-SOLVER User Manual Page 11

1.3 Passing Additional Input/Output Arguments

The problem function call provided in the examples is reduced to the bare minimum, that is
communication only the F,G and X vectors. In case the user wishes to change the name of the
problem function and/or pass additional input/output arguments, the problem function call can
freely be changed to whatever layout is desired. In case of C/C++ and Fortran such changes can
be done directly in the example file source code. In case of other languages (like Matlab or Python)
the source code in the language specific gateway file must be changed. Changing the name and/or
arguments of the problem function can be done easily with a little programming effort by the user.

Below is a Matlab pseudo-code of how a modified problem function call may look like:

1.4 Verifying a Problem Implementation

If MIDACO (or any other optimizer) should be used to solve a specific problem, it is crucial that the
problem is implemented correctly. In order to verify a problem implementation, it is recommended
that before the actual optimization begins the user executes a single function evaluation. This can
be achieved by setting the option MAXEVAL = 1 (see Section 3). By setting MAXEVAL=1 only
the starting point will be evaluated and MIDACO stops immediately, reporting the corresponding
objective and constraint values. This gives the user the chance to manually check if all reported
objective and constraint values are reasonable.

[M]IDACO-SOLVER User Manual Page 11

[M]IDACO-SOLVER User Manual Page 12

2 MIDACO Screen and Solution

If printing is enabled, MIDACO produces two output text files:

MIDACO_SCREEN.TXT and MIDACO_SOLUTION.TXT

The MIDACO screen file is identical to the output displayed on the console/command window
(except for Excel). The MIDACO screen and solution file layout is basically identical in all pro-
gramming languages. Depending different languages, minor differences only apply to the vector
index of F,G, and X and the comment symbol used for the bounds profiler. All abbreviations used
in the MIDACO screen and solution file are explained in Table 1.

[M]IDACO-SOLVER User Manual Page 12

[M]IDACO-SOLVER User Manual Page 13

Table 1: Abbreviations used in the MIDACO screen and solution output files (Figure 2)
OBJECTIVES Number of objective functions
PARALLEL Number of parallel processed problem function calls (also called co-evaluation)
N Number of variables in total
NI Number of integer variables 0 ≤ NI ≤ N
M Number of constraints in total
ME Number of equality constraints 0 ≤ ME ≤ M
MAXEVAL Maximum number of function evaluation (stopping criteria, see Section 3)
MAXTIME Maximum CPU-time budget for execution (stopping criteria, see Section 3)
PRINTEVAL Print frequency of the current best solution
SAVE2FILE Create text-file output [0=No, 1=Yes, 2=Yes + create history file]
PARAM Parameter for MIDACO tuning (default = 0, see Section 4)
EVAL Number of performed function evaluation
TIME Number of performed CPU-time Seconds
F(X) Current best objective function value, found after EVAL evaluation
VIOLATION Violation of constraints: measured as L1-Norm (Wikipedia) over vector G
IFLAG Information flag used by MIDACO to indicate final status, warnings or errors
F(i) Numerical value for individual objective Fi

G(i) Numerical value for individual constraint Gi

X(i) Numerical value for individual solution variable Xi

The BOUNDS-PROFIL is a graphical (ASCII) illustration of the relative position of X(i) regarding
its lower (XL(i)) and upper (XU(i)) bound. If X(i) is closer than 0.1% to the lower or upper bound,
the BOUNDS-PROFIL entry will display an upper-case ’XL’ or ’XU’ respectively, otherwise a
lower-case ’x’ is displayed.

The solution file contains the numerical values of the solution X for every iteration line printed on
the screen. This means, the solution file is constantly updated after every PRINTEVAL function
evaluation. This is an important feature as it gives the user the chance to access the full solution
already during runtime and adds security in case an optimization run gets interrupted for some
reason (e.g. server reboot or electricity black-out). Additionally, the very first solution (also called
starting point, EVAL=1) and the final solution are displayed. The solutions are stored one after
another. The BOUNDS-PROFIL is displayed for every solution stored in the solution file. All
objectives F(i) and constraints G(i) are displayed individually. If a constraint is infeasible, it is
highlighted by ’INFEASIBLE (G<0)’ (for inequality constraints) or ’INFEASIBLE (G NOT=0)’
(for equality constraints).

Note that X in the solution file is not updated, if X has not improved between two printing
iterations. This is done to avoid unnecessary size enlargement of the solution file.

[M]IDACO-SOLVER User Manual Page 13

http://en.wikipedia.org/wiki/Lp_space

[M]IDACO-SOLVER User Manual Page 14

2.1 PRINTEVAL and SAVE2FILE

PRINTEVAL is the critical parameter to control how often the current best solution is printed
on the screen. Note that this parameter is completely independent from any algorithmic iteration
within MIDACO. Therefore the user can freely set PRINTEVAL in such a way, that the output
frequency is convenient for display. Small values (e.g. 10, 123, 500) for PRINTEVAL will result
in a faster output frequency. Large values (e.g. 10000, 100000 or 1000000) will result in a slower
output frequency. The fastest possible output frequency is given by PRINTEVAL = 1, which
means that after every evaluation the current best solution found by MIDACO is displayed. This
option is only useful for very CPU-time intensive problems, or for debugging purposes. In general
it is recommended to set large values for PRINTEVAL. This way the user gets a better overview
on the optimization progress and MIDACO runs a little bit faster (because the printing command
needs less often to be executed). For most real-world applications it is sufficient enough to set
PRINTEVAL in such way that a new printout line happens only every couple of seconds or minutes.

The creation of the output files is optional. If SAVE2FILE is set to zero, no output file will be
created. If no output at all is desired (for example if MIDACO should be silently embedded within
a high-level software and only the final solution vector X should be further numerically processed
in such high-level software), all visual output can be suppressed by setting PRINTEVAL to zero.

Therefore: Setting PRINTEVAL=0 and SAVE2FILE=0 completely silents MIDACO.

2.2 Solution History File

Additionally to the screen and solution file, MIDACO can produce a complete history of all eval-
uated iterates X and their corresponding objective F(X) and constraint G(X) values. If the
SAVE2FILE option is given a value greater than one, MIDACO will automatically create a file
named "MIDACO_HISTORY.TXT". This file will store up as many solutions as indicated by the
value of SAVE2FILE. For example, if SAVE2FILE = 1000 is set, MIDACO will store the latest
history of 1000 solutions in this file. In case all solutions should be saved, this can be achieved
by setting SAVE2FILE a sufficient large value. For example, if SAVE2FILE = 10000000 is set,
MIDACO will store up to 10 million solutions in the history file.

Creating a history file can be useful for applications which are CPU-time intensive and were full
access to all available evaluation results is desired. Especially if parallelization is applied, the
creation of a history file offers a way to keep track on all processed evaluations.

The solution format which is used in the history file is identical to the format used for the pareto
front file "MIDACO_PARETOFRONT.TXT" created for multi-objective problems. Therefore
the content of the history file can also be plotted with the PlotTool (see Section 6).

Note: In case of parallelization, the SAVE2FILE value will count the number of blocks rather
than the individual evaluation. For example, if P=30 and SAVE2FILE=10 then up to 300
(=30×10) solution will be stored in the history file, rather than just 10 solutions. Be aware
that the file size of the history can become very large, if many solutions are stored.

[M]IDACO-SOLVER User Manual Page 14

[M]IDACO-SOLVER User Manual Page 15

3 MIDACO Stopping Criteria
The stopping criteria for MIDACO can be categorized into two groups: Hard limit criteria and
algorithmic criteria. Hard limit criteria are MAXTIME and MAXEVAL which cause MIDACO to
stop its optimization process based on a maximal budget of CPU-time or the number of function
evaluation. Algorithmic criteria are FSTOP, ALGOSTOP and EVALSTOP which cause MIDACO
to stop based on some algorithmic decision. All stopping criteria can be freely combined by the
user to fit a specific purpose at hand. The following sub-sections illustrate each criteria in detail
and furthermore give some example setup scenarios.

3.1 Hard Limit Criteria

Here stopping criteria are discussed which are based on a hard limit, such as time or evaluation.

3.1.1 MAXTIME

The MAXTIME criteria defines a maximal CPU-time budget measured in seconds. Freely set this
stopping criteria to any value. Setting a very large value (like 1000000) practically disables this
criteria. Most example problems provided with MIDACO use a dummy value of one day, which is
60*60*24. For quick orientation, below table displays usual time scales measured in seconds.

Minute : 60 = 60
15 Minutes : 60*17 <≈ 1000
Hour : 60*60 = 3600
2.5 Hours : 60*60*2.5 <≈ 10000
Day : 60*60*24 = 86400
27 Hours : 60*60*27 <≈ 100000
Week : 60*60*24*7 = 604800

3.1.2 MAXEVAL

The MAXEVAL criteria defines a maximal budget of problem function evaluation. It is a distinctive
feature of the MIDACO software implementation to be able to stop exactly after any given number
of evaluation (e.g. 123456). The user can therefore freely choose any arbitrary integer value for
MAXEVAL.

MIDACO can quickly process millions of function evaluation within seconds, if the actual function
evaluation is computationally cheap (like for benchmark problems). This means that for fast cal-
culating applications, evaluations limits of 10000000 (ten million) or 100000000 (hundred million)
are often reached within minutes. For those fast calculating applications it can be desirable to com-
pletely switch of the MAXEVAL stopping criteria. Therefore the MAXEVAL criteria will apply
only for values lower than 999999999 ("nine times nine"). If the MAXEVAL stopping criteria is
assigned any value greater or equal to 999999999, the MAXEVAL criteria is completely disabled.

[M]IDACO-SOLVER User Manual Page 15

[M]IDACO-SOLVER User Manual Page 16

Note that in contrast to above special scenario the important case of CPU-time expensive ap-
plications, where only a few thousands or just hundreds of evaluation can be calculated within
reasonable time, is discussed separately in Section 7.

3.2 Algorithmic Criteria

Here stopping criteria are discussed which are based on an algorithmic decision.

3.2.1 FSTOP

The FSTOP parameter is enabled if any value except exactly zero (0.0E+0) is assigned to it. If
MIDACO reaches a feasible solution with an objective function value lower or equal to FSTOP,
MIDACO will stop. Note that this stopping criteria refers the first objective function in case of
multi-objective problems. It is important to note that MIDACO will be strict about the FSTOP
value, therefore MIDACO does not add any tolerance to the FSTOP value. If zero is the desired
value for FSTOP, some tiny value like 0.000000001 can be used instead as FSTOP value.

3.2.2 ALGOSTOP

The ALGOSTOP parameter is enabled if any positive integer value (e.g. 1,2,3,...) is assigned
to it. This criteria will measure the algorithmic improvement between MIDACO internal ACO
restarts. The value of ALGOSTOP defines the maximal number of consecutive MIDACO internal
ACO restarts without improvement of the (feasible) objective function value. For example: If
ALGOSTOP=10 is set, than MIDACO will perform its optimization search until 10 consecutive
internal ACO restarts did not further improve the current solution.

The higher the value for ALGOSTOP is set (like 10, 50, 100 or higher) the higher the chance that
MIDACO reached the global optimal solution. In such regard this stopping criteria is the most
advanced to indicate global optimality. The significant drawback of this stopping criteria is that
it might require many (normally thousand or even millions) of function evaluation. It is therefore
only suitable for applications which are CPU-time cheap to evaluate. When experimenting with
the ALGOSTOP criteria, values such as 1, 5, 10 or 30 might be used at first to get a feeling for
the run-time effect on a specific application.

For applications with CPU-time expensive evaluation the EVALSTOP criteria is more appropriate.

3.2.3 EVALSTOP

The EVALSTOP parameter is enabled if any positive integer value (e.g. 1,2,3,...) is assigned to
it. It works similar to the ALGOSTOP criteria but with the significant difference that it does
not consider complete MIDACO internal ACO restarts but individual function evaluation. For
example: If EVALSTOP=999 is set, than MIDACO will perform its optimization search until 999
consecutive function evaluation did not further improve the current solution.

[M]IDACO-SOLVER User Manual Page 16

[M]IDACO-SOLVER User Manual Page 17

The lower the value for EVALSTOP is set (like 1000, 100 or lower) the faster MIDACO will stop.
In case EVALSTOP=1 is set, MIDACO will stop immediately after any function evaluation which
did not improve the current solution. Therefore for very small EVALSTOP values (like 1,2,3,...)
MIDACO will stop very fast. Goal of this stopping criteria is to provide an algorithmic stopping
criteria that is not as expensive as ALGOSTOP in the number of required function evaluation, but
that is still based on an algorithmic measure. When experimenting with the EVALSTOP criteria,
values such as 10000, 1000 or 500 might be used at first to get a feeling for the run-time effect on
a specific application.

The EVALSTOP criteria can further be fine-tuned by specifying the precision (in relative per-
centage) applied to measure if a new solution is considered as improvement or not. The default
precision for EVALSTOP is 0.001, which is 0.1% in relative percentage. In case a different precision
should be used, such precision should be appended as floating point extension to the EVALSTOP
value. For example: MIDACO should stop after 333 consecutive function evaluation without im-
provement of 0.25% relative percentage of the objective function value. Then setting EVALSTOP
= 333.0025 will enable such stopping criteria. If no specific floating point extension is given to
EVALSTOP, the default precision of 0.001 is applied automatically.

3.3 Example Scenarios

Here some example scenarios are given how to set up a single or several stopping criteria together.

3.3.1 Single Evaluation

If MAXEVAL=1 is set, MIDACO will only perform a single function evaluation. This is by
definition the starting point X provided by the user. This scenario is useful to verify a problem
implementation, as it give the user the chance to check in detail all objective and constraint
function values reported for the starting point X to be reasonable. This option is also useful to
re-produce a given solution (thus re-evaluating it).

3.3.2 CPU-Time expensive application

This scenario exemplifies a CPU-time expensive application where only a low number of function
evaluation are available (for example a complex machine simulation model). A suitable setup for
such application might look something like this:

MAXTIME = 50000
MAXEVAL = 999999999 (→ disabled)
FSTOP = 0 (→ disabled)
ALGOSTOP = 0 (→ disabled)
EVALSTOP = 50

Above setup assigns a hard time limit of 50000 seconds (about half a day) and further addresses
an EVALSTOP=50 stopping criteria, in the hope that such stopping criteria is reached before the
actual time limit is reached. All other criteria are disabled.

[M]IDACO-SOLVER User Manual Page 17

[M]IDACO-SOLVER User Manual Page 18

3.3.3 CPU-Time cheap application

This scenario exemplifies a CPU-time cheap application where a high number of function evaluation
can quickly be calculated (like in academic benchmark problems). A suitable setup for such
application might look like something like this:

MAXTIME = 60*60*24
MAXEVAL = 10000000
FSTOP = 0.00000001
ALGOSTOP = 200
EVALSTOP = 0 (→ disabled)

Above setup assigns a hard function evaluation limit of 10000000 (ten million) and further ad-
dresses an FSTOP=0.00000001 and ALGOSTOP=500 criteria. Thus, MIDACO will stop if a
(feasible) solution with objective lower or equal 0.00000001 is found, or the MIDACO internal
ACO performed 200 consecutive restarts without further solution improvement or the evaluation
budget is spent. This setup is not concerned with the actual time and thus practically disables
the MAXTIME criteria by given it a full day.

3.3.4 Infinite Run

The MIDACO software is constructed in such way that it is able to potentially run forever, except
the text file output it will not accumulate any data or memory and no internal algorithmic element
will run against some bound and crash.

A setup where MIDACO is practically running forever can be achieved by setting MAXEVAL
and MAXTIME to the huge value of 999999999 ("nine times nine") while keeping FSTOP, AL-
GOSTOP and EVALSTOP by their default value (zero). Such setup might appear absurd at
first, but is commonly used in practice. By disabling all automatic stopping criteria for MIDACO
the user takes the final decision when to stop the optimization run (e.g. by shutting down the
program/computer) in his/her own hand, giving MIDACO the highest chance to find the global
optimal solution (or best spread of pareto points).

Note that the MIDACO_SOLUTION.TXT and MIDACO_PARETOFRONT.TXT files are up-
dated with the latest solution(s) at each PRINTEVAL function evaluation. Therefore, even under
an infinite run scenario the user has always access to the solutions and can already further process
them or plot the pareto front while the actual MIDACO optimization run is still ongoing.

[M]IDACO-SOLVER User Manual Page 18

[M]IDACO-SOLVER User Manual Page 19

4 MIDACO Parameter
MIDACO offers several parameters to customize its performance and behavior. The individual
parameters are explained in the following subsections. The default value for all parameter is zero.

4.1 PARAM(1) : ACCURACY

This parameter defines the accuracy tolerance for the constraint violation. MIDACO considers an
equality constraint to be feasible, if |G(X)| ≤ PARAM(1). An inequality is considered feasible, if
G(X) ≥ -PARAM(1). If the user sets PARAM(1) = 0, MIDACO uses a default accuracy of 0.001.
This parameter has strong influence on the MIDACO performance on constraint problems. For
problems with many or difficult constraints, it is recommended to start with some test runs using
a less precise accuracy (e.g. PARAM(1)=0.1 or PARAM(1)=0.05) and to apply some refinement
runs with a higher precision afterwards (e.g. PARAM(1)=0.0001 or PARAM(1)=0.0000001).

Note that the displayed "VIOLATION OF G(X)" (see MIDACO screen) expresses the L1-Norm
over the vector G in respect to PARAM(1). In case all constraints are feasible to to accuracy
defined by PARAM(1), the "VIOLATION OF G(X)" is displayed as zero.

4.2 PARAM(2) : SEED

This parameter defines the initial seed for MIDACO’s internal pseudo random number generator.
The seed determines the sequence of pseudo random numbers sampled by the generator. Therefore
changing this value will lead to different results by MIDACO. The seed must be an integer greater
or equal to zero (e.g. PARAM(2) = 0,1,2,3,...,1000).

MIDACO runs are reproducible, if performed with the same seed and executed on the same machine
with identical compiler settings. Note that any change in either the hardware (CPU) or software
(e.g. compiler version or compile flags) can and will likely change the results. This is due to
the highly sensitive nature of the internal random number generator. The main advantage of a
user specified random seed is, that promising runs can be reproduced. For example, if a run was
unintentionally interrupted and should be restarted again. Another advantage is for debugging
purposes.

The impact of the seed normally varies with the complexity of the problem. In general, the more
complex the problem, the bigger the influence of the seed can be. For difficult problems it is
therefore often a more promising strategy to execute several short runs of MIDACO with different
random seeds, rather than performing only one very long run.

4.3 PARAM(3) : FSTOP

This parameter enables a stopping criteria for MIDACO. The FSTOP stopping criteria is based
on an objective function value to be reached. Full details on the FSTOP parameter are described
in Section 3.2.1. For multi-objective problems the FSTOP values applies for the first objective.

[M]IDACO-SOLVER User Manual Page 19

http://en.wikipedia.org/wiki/Lp_space

[M]IDACO-SOLVER User Manual Page 20

4.4 PARAM(4) : ALGOSTOP

This parameter enables a stopping criteria for MIDACO. The ALGOSTOP stopping criteria is
based on the algorithmic process of MIDACO. Full details on the ALGOSTOP parameter are
described in Section 3.2.2.

4.5 PARAM(5) : EVALSTOP

This parameter enables a stopping criteria for MIDACO. The EVALSTOP stopping criteria is
based on the algorithmic process of MIDACO taking account the number of function evaluation.
Full details on the EVALSTOP parameter are described in Section 3.2.3.

4.6 PARAM(6) : FOCUS

This parameter forces MIDACO to focus its search process around the current best solution and
thus makes it more greedy or local. This is one of the most powerful parameters and widely
applicable. For many problems, tuning this parameter is useful and will result in a faster con-
vergence speed (in esp. for convex and semi-convex problems). This parameter is also in es-
pecially useful for refining solutions. If PARAM(6) is not equal zero, MIDACO will apply an
upper bound for the standard deviation of its Gauss PDF’s (see Section , Figure 1). The up-
per bound for the standard deviation for continuous variables is given by (XU(i)-XL(i))/FOCUS,
whereas the upper bound for the standard deviation for integer variables is given by MAX((XU(i)-
XL(i))/FOCUS,1/SQRT(FOCUS)).

In other words:

The larger the FOCUS value, the closer MIDACO will focus its search on the current best solution.

The value for PARAM(6) must be an integer. Smaller values for FOCUS (e.g. 10 or 100) are
recommend for first test runs (without a specific starting point). Larger values for FOCUS (e.g.
10000 or 100000) are normally only useful for refinement runs (where a specific solution is used as
starting point).

Furthermore it is possible to submit negative values for FOCUS (e.g. -1000 or -10000). In such case,
the minus ("-") is not treated numerically; instead, MIDACO will interpret the minus ("-") as an
information flag. While for positive FOCUS values MIDACO will also explore other regions of the
search space by independent restarts, a negative FOCUS value disables the independent restart
option within MIDACO. In other words: For a negative FOCUS value MIDACO is focused entirely
on the starting point. Therefore negative FOCUS values should be used only for refinement runs,
where the user has high confidence in the quality of the specific solution used as starting point.

4.7 PARAM(7) : ANTS

This parameter allows the user to fix the number of ants (iterates) which MIDACO generates
within one generation (major iteration of the evolutionary ACO algorithm). This parameter must

[M]IDACO-SOLVER User Manual Page 20

[M]IDACO-SOLVER User Manual Page 21

be used in combination with PARAM(8). Using the ANTS and KERNEL parameters can be
promising for some problems (in esp. large scale problems or CPU-time intensive applications).
However, tuning these parameters might also significantly reduce the MIDACO performance. If
PARAM(7) is equal to zero, MIDACO will dynamically change the number of ants per generation.
See PARAM(8) for more information on handling this parameter.

4.8 PARAM(8) : KERNEL

This parameter allows the user to fix the number of kernels within MIDACO’s multi-kernel Gauss
PDF’s (see Section , Figure 1). The kernel size corresponds also to the number of solutions stored
in MIDACO’s solution archive. On rather convex problems it can be observed, that a lower
kernel number will result in faster convergence while a larger kernel number will result in lower
convergence. On the contrary, a lower kernel number will increase the risk of MIDACO getting
stuck in a local optimum, while a larger kernel number increases the chance of reaching the global
optimum. The kernel parameter must be used in combination with the ants parameter. In Table
2 some examples of possible ants/kernel settings are given and explained below.

Table 2: Example settings for ANTS/KERNEL combinations

Setting 1 Setting 2 Setting 3 Setting 4
ANTS 2 ANTS 30 ANTS 500 ANTS 100
KERNEL 2 KERNEL 5 KERNEL 10 KERNEL 50

The 1st setting is the smallest possible one. This setting might be useful for very CPU-time
expensive problems where only some hundreds of function evaluation are possible or for problems
with a specific structure (e.g. convexity). The 2nd setting might also be used for CPU-time
expensive problems, as a relatively low number of ANTS is considered. The 3rd and 4th setting
would only be promising for problems, with a fast evaluation time. As tuning the the ants and
kernel parameters is highly problem depended, the user needs to experiment with those values.

4.9 PARAM(9) : ORACLE

This parameter specifies a user given oracle parameter to the penalty function within MIDACO.
This parameter is only relevant for constrained problems. If PARAM(5) is not equal to zero, MI-
DACO will use PARAM(5) as initial oracle (otherwise MIDACO will use 109 as initial oracle).
This option can be especially useful for constrained problems where some background knowledge
on the problem exists. For example: It is known that a given application has a feasible solution X
corresponding to F(X)=1000 (e.g. plant operating cost in $USD). It might be therefore reasonable
to submit an oracle value of 800 or 600 to MIDACO, as this cost region might hold a new feasible
solution (to operate the plant at this cost value). Whereas an oracle value of more than 1000
would be uninteresting to the user, while a too low value (e.g. 200) would be unreasonable. More
information on the oracle penalty method can be found at the Oracle Penalty Method website.

[M]IDACO-SOLVER User Manual Page 21

http://www.midaco-solver.com/index.php/more/oracle-penalty-method

[M]IDACO-SOLVER User Manual Page 22

4.10 PARAM(10) : PARETOMAX

This parameter defines the maximal number of non-dominated solutions (also called pareto points)
stored by MIDACO. The default value used by MIDACO is 1000 (if PARAM(10)=0 is set). User
can freely set any arbitrary large integer for PARETOMAX, for example PARAM(10)=333 or
PARAM(10)=100000. Note that larger PARETOMAX values will require more memory and will
normally slow slow down the internal calculation time of MIDACO, due to increased pareto-
dominance filtering efforts. For many applications a PARETOMAX value <= 1000 is sufficient.
The user can also specify smaller values, for example PARAM(10) = 30, which will normally speed
up the internal calculation time of MIDACO.

4.11 PARAM(11) : EPSILON

This parameter defines the precision used by MIDACO for its multi-objective pareto-dominance
filter. If the default PARAM(11)=0 is set, a value of EPSILON=0.001 is used for problems with
two objectives and a value of EPSILON=0.01 is used for problems with three or more objectives.
The lower the EPSILON value, the higher the chance that a new solution is introduced into the
pareto front. Therefore the EPSILON value can have a great influence on the amount of pareto
points stored by MIDACO and also it’s internal calculation time.

For most applications, a value of EPSILON larger or equal to 0.001 is sufficient. Smaller values,
such as PARAM(11)=0.00001 or PARAM(11)=0.00000001 will normally result in many (!) more
pareto points reported. However, those pareto points are only slightly different from each other and
might therefore not provide much useful information. A special case in multi-objective optimization
are many-objective problems, which consider four or more objective functions. Those problems
often easily generate many (thousands) of non-dominated solutions. For many-objective problems
it can be useful to assign a larger EPSILON value, such as PARAM(11)=0.01 or PARAM(11)=0.1.
Using such high EPSILON value will force MIDACO to store and report only pareto points with
a significant difference in at least one of their objectives. Note that using larger EPSILON values
will also greatly speed-up MIDACO’s internal calculation times.

4.12 PARAM(12) : BALANCE

The BALANCE parameter is relevant for multi-objective problems and has a great impact. It
defines on what part/area of the pareto front MIDACO should focus its main search effort. By
default, MIDACO will focus most of its search effort on that part of the pareto front, which offers
the best equally balanced trade-off between all objectives. Using the BALANCE parameter, this
focus can be shifted to any part of the pareto-front. See Section 5.2 for a full explanation of this
parameter with detailed examples.

[M]IDACO-SOLVER User Manual Page 22

[M]IDACO-SOLVER User Manual Page 23

4.13 PARAM(13) : CHARACTER

The character parameter allows to activate MIDACO internal parameter settings. MIDACO offers
the following three pre-defined characters:

CHARACTER = 1 : MIDACO internal parameters for continuous problem types
CHARACTER = 2 : MIDACO internal parameters for combinatorial problem types
CHARACTER = 3 : MIDACO internal parameters for All-Different problem types

If PARAM(13)=0 is set, MIDACO will decide by itself if the internal parameters for the continuous
or combinatorial problem is chosen. The internal parameters for continuous problem types will
enable a more fine-grained search process, while the internal parameters for combinatorial problem
types will enable a more coarse-grained search process. A special case are All-Different problem
types. Those problems require that all integer variables must contain a different value. A famous
example for All-Different problems is the traveling salesman problem (TSP). In case of All-Different
problems the CHARACTER=3 should be enabled. If CHARACTER=3 is set, MIDACO will
generate only solutions which automatically satisfy the All-Different constraint. This means the
All-Different constraint does not need to be explicitly formulated and provided by the vector
of constrains G(X). MIDACO will take care of it automatically. When using the All-Different
character it is to note that the staring point X must already satisfy the All-Different constraint,
otherwise an IFLAG=402 error is raised.

Note that MIDACO’s All-Different character can also be used for mixed integer problems. In
such case the all-different constraint affects all integer variables, but does not affect any of the
continuous variables.

[M]IDACO-SOLVER User Manual Page 23

[M]IDACO-SOLVER User Manual Page 24

5 Multi-Objective Optimization

Multi-objective optimization considers several objective functions simultaneously. In contrast to
single-objective optimization, where (normally) a single solution exists as global optimum, in
multi-objective optimization there is (normally) not a single solution that simultaneously optimizes
each objective. Instead, a set of non-dominated, also called pareto-optimal, solutions exists, that
represents a trade-off curve (also called pareto front) between the individual objectives. As
example, consider the following multi-objective toy problem with two objectives f1(x) and f2(x):

Minimize


f1(x) = (x1 − 0)2 + (x2 − 0)2

with x1, x2 ∈ [0, 1]
f2(x) = (x1 − 1)2 + (x2 − 1)2

Then the pareto front to this toy problem looks as follows:

[M]IDACO-SOLVER User Manual Page 24

[M]IDACO-SOLVER User Manual Page 25

Multi-objective optimization with MIDACO is straight forward. The user only needs to indicate the
number of objectives via the corresponding MIDACO input parameter in the problem dimension
declaration (STEP 1.A in all example files). For previous toy problem, this looks as follows:

MIDACO will then fully automatically solve the multi-objective problem by delivering the
entire pareto-front and it will particularly highlight a single point of the pareto front as MIDACO
Solution. The MIDACO console screen for solving above toy problem looks as follows:

[M]IDACO-SOLVER User Manual Page 25

[M]IDACO-SOLVER User Manual Page 26

5.1 The Multi-Objective Progress (PRO) Function

When solving multi-objective problems, MIDACO displays aMulti-Objective Progress (PRO) func-
tion value in the main column of its screen output. This function is a unique feature of MIDACO
and acts as a measurement to monitor the overall multi-objective optimization process. It’s dis-
play and behavior is intentionally similar to those of a single-objective optimization function, which
makes the transition from a single-objective problem to a multi-objective as convenient as possible.

Without loss of generality, MIDACO considers all objectives to be minimized. A lower value in
the multi-objective progress function therefore represents a positive progress. When using the
BALANCE parameter default value (zero), or a value smaller than one, the exact meaning of the
value of the multi-objective progress function is only relevant for internal purposes of MIDACO.
Therefore it has no direct connection to the objective function values of the problem. Instead, the
purpose of displaying the PRO value is to give the user a feedback on the progress: An improve-
ment (→ lower value) in the PRO value indicates that some kind of improvement on the entire
pareto front has been made. Normally this will mean that more or better pareto points have been
discovered. It also indicates if a direct improvement on the MIDACO solution (which is a single
point of the pareto front) has been made. Such improvement may either be a lower function value
in some objective and/or a re-location of the MIDACO solution among the pareto front.

The exact calculation of the PRO function is complex and based on the Utopia-Nadir-Balance
concept introduced in [43] introduced particular for many-objective optimization problems.

5.1.1 Set BALANCE exclusively to one objective

A special case is given if the BALANCE parameter (see below Section 5.2) is set exclusively to
one out of the multiple objectives. In such case, the displayed PRO function value is identical to
the objective function value to which the BALANCE parameter has been assigned to. This way
the user can directly monitor the progress on the selected objective function via the PRO value.
This strategy is often promising, if one of the several objectives is significantly harder to solve
than the others, or if one objective is of much great importance than the others.

5.2 The BALANCE parameter

By default, MIDACO will particularly focus its search effort on that point of the pareto front which
represents the best equally balanced solution among all objectives. In case the search effort
should be focused on a different part of the pareto front, this can be achieved by the BALANCE
parameter (see also Section 4.12).

In case the search effort should focus exclusively on one out of the multiple objectives, this can
easily be achieved by setting the BALANCE parameter equal to the index number of the desired
objective. For example, if BALANCE = 1.0 is set, MIDACO will focus its search effort exclusively
on the first objective (see above Sec 5.1.1). If Balance = 2.0 is set, MIDACO will focus its search
effort exclusively on the second objective. And so on for the third, fourth, fifth,... objective.

[M]IDACO-SOLVER User Manual Page 26

[M]IDACO-SOLVER User Manual Page 27

In case the search effort should be fine-tuned on a particular part of the pareto front which repre-
sents some non-equal priority between objectives, this can be achieved by passing that information
via the individual decimal digits of the BALANCE parameter. In such case, each individual
objective can be assigned an importance (or priority) value of 0 to 9 and this value has to be placed
on the corresponding decimal position of the BALANCE parameter. This may sound complicated
at first, but is in fact very easy. For example, on a two objective problem the second objective
should be given twice as much importance as the first one. Then the following BALANCE
parameter settings will achieve this: BALANCE = 0.12 or 0.24 or 0.36 or 0.48. In all those cases
the BALANCE parameter is set in such way that the second decimal digit (corresponding to the
second objective) is as twice as high as the first digit (which corresponds to the first objective).

As another example consider that the first objective should be given four times more importance
than the second objective. Then the following BALANCE parameter settings will achieve this:
BALANCE = 0.41 or 0.82, because the first digit (→ importance of first objective) is four times
larger than the second digit (→ importance of second objective).

As a last example consider that the second objective should be given nine times more importance
as the first objective. Then the following BALANCE parameter settings will achieve this: BAL-
ANCE = 0.19, because the second digit (→ importance of second objective) is nine times higher
than the first digit (→ importance of first objective). Figure 5.2 graphically illustrates the impact
of varying BALANCE parameters for the position of the MIDACO solution among the pareto front
of previously considered toy problem.

Figure 3: Impact of the BALANCE on the MIDACO solution position on the pareto front

[M]IDACO-SOLVER User Manual Page 27

[M]IDACO-SOLVER User Manual Page 28

Note that for numerical reasons, fine-tuning of the BALANCE parameter works only on the first
eight objectives. If a fine-tuned BALANCE parameter is submitted to MIDACO, each digit below
the eight’s position will automatically be assigned a zero importance. Further note that it is
possible to assign a zero importance to any objective. This can be useful in case of many objective
problems, where some objectives should only be monitored (but be excluded from the search
effort). For example, consider a problem with 6 objectives, where the first objective should have
the highest importance, the second should have half that importance, the third and forth objective
half zero importance and the fifth and sixth objective should have half of the importance as the
second objective. Then all this information can be passed to MIDACO as a single number by
setting BALANCE = 0.420011, because:

Note that fine-tuning the BALANCE parameter is especially useful formany-objective problems,
which are notoriously difficult to solve and where focusing on a particular part of the pareto front
can be more effective than trying to obtain optimal convergence on the entire pareto front.

Important note: For numerical reasons, it is recommend to add trailing zeros to the BALANCE
parameter value, in case fine-tuning is applied. For example, instead of passing the BALANCE
value "0.15" as is to MIDACO, the value "0.15000000" should be used. The reason is that in some
programming languages (e.g. C++ and Fortran), the last digit might otherwise be replaced by its
dual-representation. For above example "0.15" this would be "0.14999999" and would therefore
pass a wrong information to MIDACO, which can lead to significantly different results.

5.2.1 Disable full front search capability

A further fine-tuning of the BALANCE parameter is possible by adding a negative "-" flag to the
numerical value. For example, setting BALANCE = -0.12000000 instead of 0.12000000. The effect
of the negative "-" flag is that MIDACO will disable all its internal full front search heuristics and
therefore focus even a little stronger on the particular desired part of the pareto front.

Setting the negative "-" flag is also possible when focusing exclusively on one out of the multiple
objectives. For example, setting BALANCE = -1.0 instead of 1.0, when focusing only on the first
objective. However, the effect of the setting a negative "-" flag to the BALANCE parameter is
generally weak and will normally only be visible if many thousands of function evaluations are
performed.

[M]IDACO-SOLVER User Manual Page 28

[M]IDACO-SOLVER User Manual Page 29

5.3 Pareto Front Data

When solving multi-objective problems and setting the SAVE2FILE parameter >= 1, MIDACO
will automatically create a text file named MIDACO_PARETOFRONT.TXT. This file con-
tains the entire pareto front approximation, and is created at each PRINTEVAL event (see Sec-
tion 2.1). The PlotTool (see Section 6) can be used to graphically illustrate the data of the
MIDACO_PARETOFRONT.TXT file.

Alternatively to the text file, user can gain access to the pareto front data via the "pf" array, which
is an input/output argument to the MIDACO source code routine (or library file in case of higher
languages). The "pf" array stores the entire pareto front information and is in used to create the
above mentioned text file. The very first element of the "pf" array stores the number of pareto
points. For programming languages starting with a zero-index (e.g. Python), this information is
given by pf[0]. For programming languages starting with a one-index (e.g. R), this information
is given by pf[1]. Once the number of stored pareto points (called psize) is known, the individual
solutions can be accessed as follows (pseudo code, starting with one-index):

psize = pf[1] # number of pareto points stored in array pf[]

pfmax = 1000 # default value of maximal number of pareto points

for k=1:psize

for i=1:o # objectives

f[i] = pf[2 + o*(k-1)+i-1]

for i=1:m # constraints

g[i] = pf[2 + o*pfmax + m*(k-1)+i-1]

for i=1:n # variables

x[i] = pf[2 + o*pfmax + m*pfmax + n*(k-1)+i-1]

User with an interest to access the pareto front data directly via the "pf" array may also consult the
"print_paretofront" subroutine code given in their respective programming language or MIDACO
gateway code. The "print_paretofront" subroutine executes above pseudo-code to create the
pareto front text file and can be copied and modified for further purposes.

[M]IDACO-SOLVER User Manual Page 29

[M]IDACO-SOLVER User Manual Page 30

5.4 Number of Pareto Points

The number of pareto points can be influenced via the PARETOMAX and EPSILON parameters.

By default, MIDACO will collect up to 1000 pareto points. This maximal limit can be changed by
setting the PARETOMAX parameter to any number. For example, if PARETOMAX = 5000 is
set, MIDACO will store up to 5000 points. Or if PARETOMAX = 60 is set, MIDACO will store
only up to 60 points.

The EPSILON parameter (see Section 4.11) defines a tolerance precision that influences if a solution
is included into the pareto front or not. The smaller the EPSILON value, the more likely a solutions
is included. A smaller EPSILON value will therefore normally result in (many) more pareto points
being collected. However, those solutions might only slightly differ from each other.

In order to collect as much pareto points as possible, a large PAERTOMAX value should be com-
bined with a small EPSILON value. For example PARETOMAX = 10000 and EPSILON = 0.00001
will normally result in many collected pareto points. One drawback of collecting large amounts of
pareto points is that the internal MIDACO runtime may significantly increase. Another drawback
is that many of those pareto points might only slightly differ and thus not offer much insight.

In order to speed up MIDACO’s internal runtime on multi-objective problems, this can be achieved
by combining a smaller PARETOMAX value with a higher EPSILON value. For example setting
PARETOMAX = 100 and EPSILON = 0.005 will likely significantly speed-up the internal run-
time of MIDACO while still delivering sufficiently well distributed pareto points. Speeding up
MIDACO’s internal runtime on multi-objective problems can be especially beneficial on problems
with many objectives.

5.4.1 Reduced filtering for many-objective optimization

In case of many-objective problems where the BALANCE parameter is fine-tuned with some ob-
jectives having assigned a zero importance (see Section 5.2), those objectives with zero importance
can be excluded from the pareto-dominance filtering process. This can be achieved by adding a
negative "-" flag to the numerical value of the PARETOMAX parameter. For example, if PARE-
TOMAX = -500 is set instead of 500, MIDACO will collect up to 500 pareto points, whereas
the pareto-dominance filtering criteria is exclusively applied to those objectives having a positive
importance indicated by the BALANCE parameter.

Using this feature will reduce the number of pareto points to the relevant set of solutions
that are pareto-optimal only in regard to those objectives, that have been assigned a positive
importance. This feature is therefore useful for problems with many objectives, where the number
of pareto points can quickly become very large and unmanageable. It can further help to speed-up
MIDACO’s internal runtime.

[M]IDACO-SOLVER User Manual Page 30

[M]IDACO-SOLVER User Manual Page 31

6 PlotTool
The PlotTool is a Windows executable program that is based on the Matplotlib [21] graphic
library. The PlotTool can generally be used to graphically illustrate pareto front data from various
sources (including other optimization algorithms than MIDACO). In particular, it can be used
to plot the MIDACO_PARETOFRONT.TXT and the MIDACO_HISTORY.TXT file. The
PlotTool.exe can also be executed in Linux and Mac using Wine.

Note that some Antivirus software may raise a false positive on the PlotTool.exe

It is recommended (but not necessary) to store the PlotTool.exe in the same folder as where
the source files are located. Double-clicking the executable will launch the program. Note that
launching might take some time due to Windows security checking’s. The main functionalities of
the PlotTool should be self explanatory. In the following some advanced features are discussed.

6.1 Values, Colors, Colormaps and LaTeX support

All numerical values given as drop-down menu choice can freely be changed. For example, it is
possible to enter Marker Size=123 or Transparency=0.456. This works also for large objective and
constraint/variable indexes. For example objective 33, constraint 44 or variable 55. Besides the
drop-down choice of single colors, any named color (e.g. silver, gold, aqua, lightpink, darkgreen)
or HEX color code (e.g. #ff5733) can be entered. For a complete list of named colors see:

https://matplotlib.org/examples/color/named_colors.html

Any Matplotlib supported colormap can be entered, if the original colormap name is entered with
an @-symbol in front. For example: @viridis, @Reds, @winter, @summer, @Pastel1. Note that
names are lower and upper case sensitive. Any colormap can be reversed by appending a "_r" at
the end of its name (e.g. "rainbow_r"). For a complete list of named colors see:

https://matplotlib.org/examples/color/colormaps_reference.html

Title and legend texts support most common LaTeX syntax commands. For example the title
"$\alpha-\beta-\gamma$ Design" will be displayed as "α− β − γ Design".

6.2 Additional Data Files and Background position

Up to three additional source files can be used in addition to the main source file. Each file can
either contain several solutions (e.g. history file), or just a single one. The plot hierarchy will put
the main source file in the foreground and the last add file in the background. Optionally the main
source file data can be place in the Background Position, if that option box is ticked.

[M]IDACO-SOLVER User Manual Page 31

https://en.wikipedia.org/wiki/Wine_(software)
https://matplotlib.org/examples/color/named_colors.html
https://matplotlib.org/examples/color/colormaps_reference.html

[M]IDACO-SOLVER User Manual Page 32

6.3 Solution export and re-import

An important feature of the PlotTool is it’s capability to export individual solutions from the
source files. On a 2D plot, place the mouse cursor on the desired solution point and press the
right-clickmouse button. A dialog will appear, asking for confirmation to export the solution with
respective x-axis and y-axis coordinates. If confirmed, the PlotTool will search among all source
files (main and additional ones) that specific solution, which is closest to the position of the mouse
cursor. If successful, a new dialog window will pop-up, asking to store the solution into a text file.
This text file will then contain the entire solution information (F,G and X) and present it in several
common programming language formats. From that text file, the solution can then be investigated
and further processed by copy-and-paste, for example as starting point for a refinement run.

This feature is particular useful for source files with many (thousands) of pareto-optimal solutions.
Note that the export search process can take some seconds on large source files.

This feature is also useful to highlight a specific pareto point in the plot. Once a solution was
exported into a text file, it can easily be re-imported into the plot using the "ADD FILE" option.
As additional source file, the point can be given a different size, color or marker to distinguish it.

6.4 Save, load and reset

The entire PlotTool user settings can be saved and loaded. The default name of the file which stores
the settings data is PlotTool.set. This file can also be manually changed and includes additional
options, like GUI positioning and changing the number of colorbar marks. Changes take effect
after restarting the PlotTool with the modified PlotTool.set file located in the same folder.

All settings can be reset to their default values, using "LOAD" > "Reset All to Default".

6.5 Live mode

The LIVE command will cause the PlotTool to constantly check for updates in the source files and
display them in real-time in the plot. The LIVE command is more fault-tolerant then the PLOT
command, for example the LIVE command will also execute, even if no source file is present yet.
Note that the LIVE mode requires some CPU power and might therefore (slightly) reduce the
MIDACO optimization execution speed.

Warning: In some cases (e.g. VBA and MS-Visual) the LIVE mode can cause the MIDACO
optimization run to crash. This is due to a file access conflict, when both, the PlotTool and
MIDACO try to gain access to the source file. Caution is advised.

6.6 Zooming

Using the mouse wheel will zoom in and out on a 2D plot. On a 3D plot zooming can be achieved
by keeping the right mouse button pressed and moving the mouse forward or backward. Note that
solution export is only available in 2D plots.

[M]IDACO-SOLVER User Manual Page 32

[M]IDACO-SOLVER User Manual Page 33

6.7 Customized MIDACO colormap

Besides the regular Matplotlib colormaps, the PlotTool offers a customizable MIDACO colormap
that is particular suited for optimization purposes. This colormap consists of five separated colors
(yellow, orange, blue, green) and white. It’s specific feature is that the color range gets expo-
nentially smaller towards the edge. As the edge represents the minimum (or maximum) and is
therefore of greater importance, this colormap offers a more detailed display of this area of inter-
est. The MIDACO colormap offers two parameters: The percentage (%) along the entire colormap
until which the colors are displayed and the exponential factor (ex) according to which the colors
change. For example, the colormap "midaco_50%_ex2.5" will leave 50% of the entire colormap
range white and change the colors according an exponential factor of 2.5. The exponential factor
should normally be selected as floating number somewhere between 2.0 and 4.0. Below Figure dis-
plays four different customized midaco colormaps on the Fonesca benchmark. In below Figure the
colormap has further been reversed, adding the "_r" to its name. Further note that the number
of colormap marks has been increased from 10 to to 30 (see Section 6.4) for more detailed analysis.

Figure 4: Four examples of customized MIDACO colormaps on the Fonesca benchmark

[M]IDACO-SOLVER User Manual Page 33

[M]IDACO-SOLVER User Manual Page 34

7 Parallelization
MIDACO offers the possibility to evaluate multiple solution candidates in parallel. In the context
evolutionary algorithms such feature is also known as co-evaluation or fine-grained parallelization.
Figure 5 illustrates how a block of P solution candidates (x1, x2, x3, ... xP) is submitted for
parallel evaluation and the corresponding objective and constraint values ([f1,g1],...,[fP.gP]) are
returned to MIDACO.

If an optimization problem is CPU-time expensive, that means a single evaluation of the objectives
and constraints requires a significant amount of time, parallelization is highly beneficial in reducing
the overall time required to solve the problem. In a recent study (Schlueter & Munetomo [44])
it was numerically demonstrated on 200 benchmark problems that MIDACO’s potential speed up
by parallelization exhibits a nearly linear scale-up, which means it is most effective. For a paral-
lelization factor of P = 10 the potential speed up was around 10 times, while for a parallelization
factor of P = 100 the potential speed up was still around 70 times (see Figure 4 in [44]). Note
that due to the parallelization overhead such speed ups are only expected if the time to calculate
the objectives and constraints is CPU-time expensive. Sub-section 7.2 discusses this issue in more
detail.

Figure 5: MIDACO evaluating a block of P solutions in parallel.

[M]IDACO-SOLVER User Manual Page 34

[M]IDACO-SOLVER User Manual Page 35

7.1 Running MIDACO in parallel

Running MIDACO in parallel mode is easy. Fully functional examples are given online for various
languages (Matlab, Python, C++, R, Java, C#, Fortran) at:

http://www.midaco-solver.com/index.php/more/parallelization

Note that MIDACO’s parallelization feature is not limited to those languages and approaches (like
openMP or MPI) and can further be used in other languages and other parallelization approaches
(like GPGPU or Hadoop/Spark). Based on MIDACO’s reverse communication concept its paral-
lelization feature can be enabled with virtually any language/approach.

7.2 Parallelization overhead

Because parallel computing will introduce some computational overhead, the question if running
MIDACO in parallel mode is effective or not depends mainly on two aspects: The programming
language/approach and the actual CPU-time to evaluate the objectives and constraints. As the
computational overhead can be significantly large in some languages (particular in Matlab), it may
happen that parallelization actually increases the overall optimization time, instead of reducing
it. This is normally the case if problem function evaluation is not time intensive to compute, for
example a single evaluation takes less than 0.00001 seconds.

Table 3 gives some rough guideline on the minimal evaluation cost for which parallelization is
recommended, depending on various languages. As those times are subject to the actual cpu
specification and also the number of available parallel threads, the actual times for a user may
be both: larger or smaller. Users are advised to experiment, if parallelization in a given case is
beneficial or not.

Table 3: Minimal evaluation cost for which parallelization is promising
Language Minimial evaluation cost
Matlab 1.0 Second
Python 0.01 Second
R 0.01 Second
Java 0.001 Second
C/C++ 0.001 Second
Fortran 0.001 Second

[M]IDACO-SOLVER User Manual Page 35

http://www.midaco-solver.com/index.php/more/parallelization
http://blog.nag.com/2010/01/reverse-communication.html

[M]IDACO-SOLVER User Manual Page 36

8 Tips & Tricks
This section describes some advanced hints in common optimization scenarios.

8.1 Constraint Handling

Constraint handling is an important and challenging area in optimization. The MIDACO software
is capable to solve problems with up to hundreds and even thousands of constraints (e.g. see
MIDACO benchmark website or Schlueter and Munetomo [44]). This includes equality as well as in-
equality constraints, whereas in-equality constraints are normally easier to solve by MIDACO. Due
to MIDACO’s black-box concept there is no restriction on the function properties of the constraints,
therefore they might be linear or non-linear and do not need to be smooth or differentiable.

In order to efficiently solve problems with many and/or difficult constraints with MIDACO, a
cascading approach with multiple runs is recommended. The most critical parameter in solving
problems with many constraints is the accuracy (PARAM(1), see Section 4.1) that measures the
constraint violation. For problems with many constraints the default accuracy of 0.001 might be
too difficult or time intensive to reach with a solution from scratch. Therefore the accuracy should
be increased for a first run. Depending on the given application, a suitable accuracy value for a
first run might be for example 0.1, 0.5 or even 1.0. With such high PARAM(1) value MIDACO
will normally find feasible solutions much quicker and will also proceed faster in minimizing the
objective function value, once a feasible area is found.

After above described first run with moderate constraint accuracy, the refinement of the solution
accuracy can begin. Above implied feasible solution with moderate constraint accuracy can be
used as starting point for further runs with a more precise accuracy, such as 0.01, 0.001 or lower.
For such refinement runs it is advisable to activate the FOCUS parameter (see Section 4.6). How
many refinement runs and which particular ACC and FOCUS settins are promising is subject to a
given application. Table 4 gives a rough example on possible ACC and FOCUS settings for solving
a difficult constrained problem in several runs. Note that in Table 4 it is assumed that the final
solution satisfies a constraint violation equal or below 0.00001.

Table 4: Potential settings for multiple runs
Run ACC FOCUS Starting point
1st 0.5 0.0 (default) from scratch
2nd 0.1 -10.0 previous solution
3rd 0.01 -100.0 previous solution
4th 0.001 -1000.0 previous solution
5th 0.00001 -100000.0 previous solution

With the hypothetical multiple run setup in Table 4 it requires five runs in total to solve the
constrained problem to a solution with the desired constraint accuracy of 0.00001. Note that the
FOCUS parameter is used with its "-" flag, which forces MIDACO to stay with the current solution
and disable complete internal restarts. This is done as in above scenarios the 2nd till 5th run are
considered as refinement runs only.

[M]IDACO-SOLVER User Manual Page 36

http://www.midaco-solver.com/index.php/about/benchmarks

[M]IDACO-SOLVER User Manual Page 37

8.2 Highly nonlinear problems

Similar to solving problems with many and/or difficult constraints, it may be useful to solve highly
nonlinear problems (and in generally very difficult to solve problems) with a setup of several runs.
In such scenario the first run act as from scratch run to deliver a decent first solution which is
then further refined in following runs. The critical parameter for such refinement runs is FOCUS
(see Section 4.6). Table 5 gives an example scenario of three runs where the 2nd and 3rd run are
refinement runs.

Table 5: Potential settings for multiple runs
Run FOCUS Starting point
1st 0.0 (default) from scratch
2nd 100.0 previous solution
3rd -10000.0 previous solution

Note that in Table 5 the 2nd run assumes the FOCUS parameter without the "-" flag. This is done
to enable MIDACO to still explore further areas in the 2nd run, even though it is a refinement
run. In contrast to that, the 3rd run assumes FOCUS with its "-" flag, as the 3rd run is intended
as the final refinement for high precision.

8.3 Large-Scale Problems

Performance on problems with hundreds and thousands of variables generally benefit from tuning
the following parameter: FOCUS, ANTS, KERNEL. For the FOCUS parameter values such as 10,
50 or 100 might work in a first run from scratch. The reason for this is that in large-scale problems
the FOCUS parameter effect can be stronger as in small-scale problems because a search space
reduction is of greater impact in large-scale problems. For the ANTS and KERNEL parameters,
settings such as [ANTS=2,KERNEL=2], [ANTS=5,KERNEL=20] or [ANTS=10,KERNEL=50]
might improve the performance. Low values for the ANTS and KERNEL parameters will also
reduce the search space exploration and thus lead to faster convergence.

On the contrary, above tuning examples might lead to sub-optimal convergence to a local solu-
tion. As large-scale problems are generally difficult to solve, such local solution might however be
acceptable in such scenarios where the gained reduction in run-time is of greater value than the
solution quality.

8.4 CPU-Time expensive applications

The performance on solving CPU-time expensive applications with MIDACO can be greatly im-
proved by using parallelization. For applications where a single objective and constraint evaluation
is expensive (for example takes more than few seconds), parallelization will on average always (dras-
tically) reduce the total time required to solve the problem. Furthermore, the higher the level of
parallelization the better. In Schlueter and Munetomo [44] it was demonstrated the for a par-
allelization factor of 100 the number of sequential steps required by MIDACO could be reduced
by around 70 times. For a CPU-time expensive application this means that if a cluster with 100

[M]IDACO-SOLVER User Manual Page 37

[M]IDACO-SOLVER User Manual Page 38

threads is available, the MIDACO runtime can be increased around 70 times. This is for example
less than a day instead of 2 month (≈ 60 days).

In addition to parallelization, the same recommendation (ANTS, KERNEL, FOCUS) as given for
large-scale problems (see Section 8.3) can be applied to CPU-time expensive applications. This
is because in both scenarios, large-scale and CPU-time expensive applications, a reduction of the
search space (and therefore of the number of function evaluation) has great impact. As mentioned
in (see Section 8.3) the recommended settings might lead to faster convergence but a sub-optimal
solution. For CPU-time expensive application this might be acceptable when a sub-optimal but
good solution reached in reasonable time is preferred over a global solution which search effort
would require unreasonable time.

8.5 Solving non-linear equation systems

Due to MIDACO’s capability to handle problems with hundreds and even thousands of constraints,
MIDACO can be used to solve systems of nonlinear equations (in which there are typically no
particular objective functions). Instead of formulating all constraints as constraints and leaving
the objective function blank (for example a constant value), it is recommended that the most
difficult constraint is formulated as objective. Such way MIDACO will more easily find solutions
that satisfy the majority of constraints and future refinement runs can focus on satisfying the most
difficult constraint (given as objective).

8.6 Multi-modal optimization

Multi-modal optimization seeks to locate not only a single global solution, but the set of all local
solutions. Because MIDACO is based on an evolutionary algorithm it explores a vast area of
the search space and consequently enters a lot of local optima (in case of multi-modal problem
landscapes). Enabling the creation of a history file (see Section 2.2) gives the user an easy option
to keep track on all evaluated solutions and consequently to further investigate all local solutions
found during the search process.

8.7 Submitting several starting points

When running MIDACO with parallelization, it is possible to submit several starting points.
This option is useful for very cpu-time intensive application (which require e.g. hours for a single
evaluation). By default, MIDACO example templates expect only a single starting point, which
is then duplicated into the XXX array which stores P solution vectors X one after another. The
corresponding source code in Matlab can be found in the gateway "midaco.m" around line 100:

[M]IDACO-SOLVER User Manual Page 38

[M]IDACO-SOLVER User Manual Page 39

In case several starting points should be stored in the XXX array, those must be placed manually
by the user by modifying the XXX fill up command. For example, consider P=3 and three different
starting points, then the modified "midaco.m" gateway might look like following:

The source code commands for the XXX array fill up might look slightly different depending on
the language, but is essentially always fulfilling the same purpose. Note that it is also possible
(and can be useful) to submit different random solutions as starting points.

8.8 Parallel-Overclocking with MIDACO

In case of CPU-time expensive applications where the evaluation time drastically varies (for exam-
ple some evaluation may take seconds while other may take minutes or hours) and parallelization
with a sufficient large number of threads/cores is performed, it can be efficient to overclock MI-
DACO’s parallelization factor. The term overclocking means here that a larger parallelization
factor P is assigned than actual physical threads/cores are available. This approach is also known
as oversubscription in high-performance computing HPC. Because the parallelization factor P
can be freely chosen, it can be set to any integer value larger (or smaller) than the actual number
of threads/cores available.

For example: Consider a cluster of 32 CPU’s (each with one core) which act as function evalua-
tor for some master node which runs MIDACO (such setup can for example be established with
Spark). Assigning a parallelization factor of P=64 or P=128 to MIDACO will exceed the actual
number of number of available cores but might lead to overall faster processing. The reason is that
the pool of cores in the cluster can be used more effectively by utilizing cores which otherwise (in
case of P=32) would be idle for some time after a evaluating a fast calculating solution.

Note: In some cases overclocking might also be effective on a single machine. However, overclocking
is not recommended on applications where all solution evaluation require equal or quite similar
CPU-time.

[M]IDACO-SOLVER User Manual Page 39

https://blogs.msdn.microsoft.com/visualizeparallel/2009/12/01/oversubscription-a-classic-parallel-performance-problem/
https://en.wikipedia.org/wiki/Supercomputer

[M]IDACO-SOLVER User Manual Page 40

9 IFLAG Messages
This section describes the list of IFLAG values used by MIDACO as information flag. MIDACO
reports various IFLAG values to indicate final solution information, warnings or input errors. In
case of final solution messages an IFLAG value between 1 and 7 is stated, indicating the reason for
terminating and if the solution is feasible or not. It is quite common in the process of setting up a
new optimization problem that some IFLAG error messages (like IFLAG=204→ bound error) are
experienced. Those are normally easy to fix and not of greater concern. The is a list of all relevant
IFLAG values. Note that MIDACO uses negative IFLAG values for internal communication only.

9.1 Solution Messages (IFLAG = 1 ∼ 9)

Table 6 describes IFLAG messages which are reported along with a solution reported by MIDACO.

Table 6: MIDACO solution messages indicated by IFLAG
IFLAG
1 Feasible solution found, MIDACO was stopped by MAXEVAL or MAXTIME
2 Infeasible solution found, MIDACO was stopped by MAXEVAL or MAXTIME
3 Feasible solution, MIDACO stopped automatically by ALGOSTOP
4 Infeasible solution, MIDACO stopped automatically by ALGOSTOP
5 Feasible solution, MIDACO stopped automatically by EVALSTOP
6 Infeasible solution, MIDACO stopped automatically by EVALSTOP
7 Feasible solution, MIDACO stopped automatically by FSTOP

9.2 Warning Messages (IFLAG = 10 ∼ 99)

Table 7 describes IFLAG messages which are reported as warning at the beginning of the opti-
mization process. Those warning can be ignored, but are sometimes an indicator that the problem
setup is flawed.

Table 7: MIDACO warning messages indicated by IFLAG
IFLAG
51 Some X(i) is greater/lower than +/- 1016 (try to avoid huge values)
52 Some XL(i) is greater/lower than +/- 1016 (try to avoid huge values)
53 Some XU(i) is greater/lower than +/- 1016 (try to avoid huge values)
71 Some XL(i) = XU(i) (fixed variable)
81 F(1) has value NaN for starting point X
82 Some G(X) has value NaN for starting point X
91 FSTOP is greater/lower than +/- 1016

92 ORACLE is greater/lower than +/- 1016

[M]IDACO-SOLVER User Manual Page 40

[M]IDACO-SOLVER User Manual Page 41

9.3 Error Messages (IFLAG = 100 ∼ 999)

Table 8 and Table 9 describe IFLAG messages which are reported as error at the beginning of an
optimization run. MIDACO will reject to perform any optimization if an error message is raised.

Table 8: MIDACO error messages indicated by IFLAG
IFLAG Message Description
100 P <= 0 or P > 1099

101 O <= 0 or O > 109

102 N <= 0 or N > 1099

103 NI < 0
104 NI > N
105 M < 0 or M > 1099

106 ME < 0
107 ME > M
201 Some X(i) has type NaN
202 Some XL(i) has type NaN
203 Some XU(i) has type NaN
204 Some X(i) < XL(i)
205 Some X(i) > XU(i)
206 Some XL(i) > XU(i)

Note: The array count index of PARAM(i) is starting with one here, not zero.
301 PARAM(1) < 0 or PARAM(1) > 1099

302 PARAM(2) < 0 or PARAM(2) > 1099

303 PARAM(3) greater/lower than +/- 1099

304 PARAM(4) < 0 or PARAM(4) > 1099

305 PARAM(5) greater/lower than +/- 1099

306 PARAM(6) not discrete or PARAM(6) > 1099

307 PARAM(7) < 0 or PARAM(7) > 1099

308 PARAM(8) < 0 or PARAM(8) > 100
309 PARAM(7) < PARAM(8)
310 PARAM(7) > 0 but PARAM(8) = 0 (ANTS and KERNEL must be used together)
311 PARAM(8) > 0 but PARAM(7) = 0 (ANTS and KERNEL must be used together)
312 PARAM(9) greater/lower than +/- 1099

321 PARAM(10) >= 1099

322 PARAM(10) not discrete
331 PARAM(11) < 0 or > 0.5
344 Pareto front (PF) workspace LPF is too small. LPF must be at least of size

(O+M+N)*PARETOMAX + 1, where PARETOMAX=1000 is default (Sec 4.10)
347 PARAM(5) > 0 but PARAM(5) < 1
348 PARAM(5): Optional EVALSTOP precision appendix > 0.5
350 PARAM(12) < -1 or PARAM(12) > 1 but not a discrete value
351 PARAM(13) < 0 or PARAM(13) > 3
352 PARAM(13) not a discrete value
399 Some PARAM(i) has type NaN

[M]IDACO-SOLVER User Manual Page 41

[M]IDACO-SOLVER User Manual Page 42

Table 9: MIDACO error messages indicated by IFLAG (continued)
401 ISTOP < 0 or ISTOP > 1
402 Starting point does not satisfy all-different constraint
IFLAG Message Description
501 Double precision work space size LRW is too small.

Increase size of RW array. RW must be at least of
size LRW = 120*N+20*M+20*O+20*P+P*(M+2*O)+O*O+5000

502 Internal LRW check error (please contact support)
601 Integer work space size LIW is too small.

Increase size of IW array. IW must be at least of
size LIW = 3*N+P+1000

602 Internal LIW check error (please contact support)
701 Input check failed! MIDACO must be called initially with IFLAG = 0
881 Integer part of X contains continues (non discrete) values
882 Integer part of XL contains continues (non discrete) values
883 Integer part of XU contains continues (non discrete) values
900 Invalid or corrupted LICENSE-KEY
999 N > 4. The free version is limited up to 4 variables.

References
[1] Abolhassani, A., .Harner, J., Jaridi, M., Gopalakrishnan, B.: Productivity enhancement strate-

gies in North American automotive industry. Int. J. Prod. Res., 8(3), pp.1–18 (2017)

[2] Alghamdi W.Y., Wu H., Zheng W., Kanhere S.S.: Constructing A Shortest Path Overhearing
Tree With Maximum Lifetime In WSNs. Hawaii International Conference on System Sciences
(HICSS-49) (2016)

[3] Allugundu I., Puranik P., Lo Y.P. and Kumar A.: Acceleration of distance-to-default with
hardware-software co-design. 22nd International Conference on Field Programmable Logic
and Applications (FPL) (2012)

[4] Askin, T., Pornet, P.C., Vratny, M., Schmidt, M.: Optimization of Commercial Aircraft
Utilizing Battery based Voltaic-Joule/Brayton Propulsion. Journal of Aircraft 54(1), pp. 246–
261 (2016)

[5] Astos Solutions GmbH: Low-Thrust Orbit Transfer Trajectory Optimization Software (LO-
TOS). Stuttgart, Germany (2016)

[6] Bahbahani M.S., Baidas M.W., Alsusa E.A.: A Distributed Political Coalition Formation
Framework for Multi-Relay Selection in Cooperative Wireless Networks. IEEE Transactions
on Wireless Communications, Volume 14 , Issue: 12, pp. 6869 - 6882 (2016)

[7] Bahbahani M.S., Alsusa E.A.: Relay Selection for Energy Harvesting Relay Networks using
a Repeated Game. IEEE Wireless Communications and Networking Conference (WCNC), At
Doha, Qatar (2016)

[M]IDACO-SOLVER User Manual Page 42

https://indico.esa.int/indico/event/111/session/21/contribution/160/material/slides/0.pdf
https://indico.esa.int/indico/event/111/session/21/contribution/160/material/slides/0.pdf

[M]IDACO-SOLVER User Manual Page 43

[8] Baidas M.W. and MacKenzie A.B.: On the Impact of Power Allocation on Coalition Forma-
tion in Cooperative Wireless Networks. IEEE 8th International Conference on Wireless and
Mobile Computing, Networking and Communications (2012)

[9] Baidas M.W. and Alsusa E.A.: Power allocation, relay selection and energy cooperation strate-
gies in energy harvesting cooperative wireless networks. Wirel. Commun. Mob. Comput., DOI:
10.1002/wcm.2668 (2016)

[10] Baidas M.W. and Masud M.: Energy-efficient partner selection in cooperative wireless net-
works: a matching-theoretic approach. International Journal of Communication Systems, Vol-
ume 29, Issue 8, pp 1451-1470 (2016)

[11] Chagwiza G., Musekwa S., Jones B., Mtisi S.: Impact of new water sources on the overall
water network: an optimisation approach. International Journal of Mathematics and Statistics
Research, Vol.1, No.1, pp. 32-41 (2014)

[12] Chakraborty, D., Wang, T., Monika, A., Manfred, J., Christoph, L., Lambert, M., Schueler,
W.: Adapting Douglas-fir forestry in Central Europe: evaluation, application, and uncertainty
analysis of a genetically based model. European Journal of Forest Research, 135(5), pp. 919–
936 (2016)

[13] Comas M.: Application of sales forecasting for new products. Technical report, Escola tecnica
superior d’enginyeria industrial de Barcelona, Spain (2012)

[14] Dell I., Lekszyck T., Pawlikowski M., Grygoruk R., Greco L. : Designing a light fabric meta-
material being highly macroscopically tough under directional extension: rst experimental evi-
dence. Zeitschrift fur angewandte Mathematik und Physik (ZAMP) Vol 66 (6), pp. 3473-3498
(2015)

[15] Duquenne, B.: Optimization tool dedicated to the validation process for the automotive indus-
try. MSc Thesis, University of Liege, Belgium (2017)

[16] Esche E.: MINLP optimization under uncertainty of a mini plant for the oxidative coupling
of methane. PhD-Thesis, Fakultaet III, Prozesswissenschaften, Technical University of Berlin
(2015)

[17] Faramondi, L., Oliva, G., Panzieri, S., Pascucci, F., Schlueter, M., Munetomo, M., Setola, R.:
Network Structural Vulnerability: A Multiobjective Attacker Perspective. IEEE Transactions
on Systems, Man, and Cybernetics: Systems, 99, pp.–1-14 (2018)

[18] European Space Agency (ESA) and Advanced Concepts Team (ACT): GTOP database -
global optimisation trajectory problems and solutions. (2016)

[19] Grujic I., Nilsson R.: Model-based development and evaluation of control for complex multi-
domain systems: attitude control for a quadrotor UAV. Technical report ECE-TR-23, Aarhus
University, Denmark (2016)

[M]IDACO-SOLVER User Manual Page 43

http://www.esa.int/gsp/ACT/inf/op/globopt.htm
http://www.esa.int/gsp/ACT/inf/op/globopt.htm

[M]IDACO-SOLVER User Manual Page 44

[20] Haenel M., Kuhn S., Henrich D., Gruene L. and Pannek J.: Optimal camera placement to
measure distances regarding static and dynamic obstacles. Int. J. of Sensor Networks, 12(1),
pp.25–36 (2012)

[21] Hunter, J. D.: Matplotlib: A 2D graphics environment. Computing In Science & Engineering,
9(3), pp.90–95 (2007)

[22] Kahar, N.H.B.A., Zobaa, A.F. : Optimal single tuned damped filter for mitigating har-
monics using MIDACO. IEEE Industrial and Commercial Power Systems Europe, DOI:
10.1109/EEEIC.2017.7977541, (2017)

[23] Kahar, N.H.B.A., Zobaa, A.F. : Application of mixed integer distributed ant colony optimiza-
tion to the design of undamped single-tuned passive filters based harmonics mitigation. Swarm
and Evolutionary Computation, https://doi.org/10.1016/j.swevo.2018.03.004, in press (2018)

[24] Lou X.: Acceleration of Distance-to-Default with GPU. Master-Thesis, School of Information
& Communication Technology Royal Institute of Technology Stockholm, Sweden (2012)

[25] Mahajan N.R., Mysore S.P.: Combinatorial neural inhibition for stimulus selection across
space. biorxiv, doi.org/10.1101/243279 (2018)

[26] Minguijon Pallas, P.: Cubesat Deployment Trajectories for the Asteroid Impact Mission.
MSc Thesis, Delft University of Technology, Netherlands (2017)

[27] Mohammed, S. M.: Exergoeconomic analysis and optimization of combined cycle power plants
with complex configuration. PhD Thesis, Univ. of Belgrade, Fac. Mech. Eng., Serbia (2015)

[28] Mukalu, M.S., Lijun, Z., Xiaohua, X.: A Comparative Study on the Cost-effective Belt Con-
veyors for Bulk Material Handling. Energy Procedia, Volume 142, pp. 2754–2760 (2017)

[29] Nie C., Wu H., Zheng W.: Lifetime-Aware Data Collection Using A Mobile Sink in WSNs with
Unreachable Regions. MSWiM17, November 21-25, 2017, Miami, FL, USA 20th ACM Inter-
national Conference on Modelling, Analysis and Simulation of Wireless and Mobile Systems
Pages 143-152, DOI:10.1145/3127540.3127544 (2017)

[30] Perez R.E., Jansen P.W.: Effect of Passenger Preferences on the Integrated Design and Op-
timization of Aircraft Families and Air Transport Network. 17th AIAA Aviation Technology,
Integration, and Operations Conference, DOI: 10.2514/6.2016-3748 (2017)

[31] Redutskiy Y.: Oilfield development and operations planning under geophysical uncertainty.
Engineering Management in Production and Services, Volume 9, Issue 3, Pages 10-27,
doi.org/10.1515/emj-2017-0022 (2018)

[32] Rehberg M., Ritter J.B, Genzela Y., Flockerzi D. and Reichl U.: The relation between growth
phases, cell volume changes and metabolism of adherent cells during cultivation. J. Biotechnol.,
164(4), pp. 489–499 (2013)

[M]IDACO-SOLVER User Manual Page 44

[M]IDACO-SOLVER User Manual Page 45

[33] Schittkowski K.: NLPQLP - A Fortran Implementation of a Sequential Quadratic Program-
ming Algorithm with distributed and non-monotone Line Search (User Manual), Report, De-
partment of Computer Science, University of Bayreuth (2009)

[34] Schlueter M., Egea J.A. and Banga J.R.: Extended Ant Colony Optimization for non-convex
Mixed Integer Nonlinear Programming , Comput. Oper. Res. 36(7), pp. 2217–2229 (2009)

[35] Schlueter M., Egea J.A., Antelo L.T., Alonso A.A. and Banga J.R.: An extended Ant Colony
Optimization algorithm for integrated Process and Control System Design, Ind. Eng. Chem.
48(14), pp. 6723–6738 (2009)

[36] Schlueter M. and Gerdts M.: The Oracle Penalty Method , J. Global Optim. 47(2), pp. 293–325
(2010)

[37] Schlueter M., Rueckmann J.J and Gerdts M.: A Numerical Study of MIDACO on 100 MINLP
Benchmarks , Optimization, 61(7), pp. 873–900 (2012)

[38] Schlueter M.: Nonlinear mixed integer based Optimisation Technique for Space Applications ,
Ph.D. Thesis, School of Mathematics, University of Birmingham (UK) (2012)

[39] Schlueter M., Erb S., Gerdts M., Kemble S. and Rueckmann J.J.: MIDACO on MINLP Space
Applications , Optimization, 51(7), pp.1116–1131 (2013)

[40] Schlueter M. and Munetomo M.: Parallelization Strategies for Evolutionary Algorithms for
MINLP , Proc. Congress on Evolutionary Computation (IEEE-CEC), pp.635-641 (2013)

[41] Schlueter M. and Munetomo M.: Parallelization for Space Trajectory Optimization, Proc.
World Congress on Computational Intelligence (IEEE-WCCI), pp. 832 - 839 (2014)

[42] Schlueter M.: MIDACO Software Performance on Interplanetary Trajectory Benchmarks ,
Advances in Space Research (Elsevier), Vol 54, Issue 4, Pages 744 - 754 (2014)

[43] Schlueter M., Yam C.H., Watanabe T., Oyama A.: Parallelization Impact on Many-Objective
Optimization for Space Trajectory Design, Int. J. of Machine Learning and Computing 6.1:
9-14. (2016)

[44] Schlueter M. and Munetomo M.: Numerical Assessment of the Parallelization Scalability on
200 MINLP Benchmarks , Proc. IEEE-WCCI, Vancouver, Canada (2016)

[45] Takano A.T. and Marchand B.G.: Optimal Constellation Design for Space Based Situa-
tional Awareness Applications AAS/AIAA Astrodynamics Specialists Conference (Paper No.
AAS11-543) (2011)

[46] Teichgraeber, H., Brodrick, P., Brandt, A.: Optimal design and operations of a flexible oxyfuel
natural gas plant. Energy 141, DOI: 10.1016/j.energy.2017.09.087 (2017)

[47] Tilly, J., Niedermayer, K.: Employment and Welfare Effects of Short-Time Work. German
Economic Association, Annual Conference: Demographic Change, Augsburg (2016)

[M]IDACO-SOLVER User Manual Page 45

http://www.midaco-solver.com/index.php/about/publications
http://www.midaco-solver.com/index.php/about/publications
http://www.midaco-solver.com/index.php/about/publications
http://www.midaco-solver.com/index.php/about/publications
http://www.midaco-solver.com/index.php/about/publications
http://www.midaco-solver.com/index.php/about/publications
http://www.midaco-solver.com/index.php/about/publications
http://www.midaco-solver.com/index.php/about/publications
http://www.midaco-solver.com/index.php/about/publications
http://www.midaco-solver.com/index.php/about/publications
http://www.midaco-solver.com/index.php/about/publications
http://www.midaco-solver.com/index.php/about/publications
http://www.midaco-solver.com/index.php/about/publications
http://www.midaco-solver.com/index.php/about/publications
http://www.midaco-solver.com/index.php/about/publications
http://www.midaco-solver.com/index.php/about/publications
http://www.midaco-solver.com/index.php/about/publications
http://www.midaco-solver.com/index.php/about/publications

[M]IDACO-SOLVER User Manual Page 46

[48] Ukritchon B., Boonyatee T.: Soil Parameter Optimization of the NGI-ADP Constitutive
Model for Bangkok Soft Clay. Geo. Eng. J. SEAGS & AGSSEA, Vol. 46(1), pp. 28-36 (2015)

[49] Wang K., Mao Y., Chen J., Yu S.: The optimal research and development portfolio of low-
carbon energy technologies: A study of China. J. Clean. Prod., Vol 176, pp. 1065–1077 (2018)

[50] Weiss L., Koeke H., Schlueter M., Huehne C.: Structural optimisation of a composite aircraft
frame for a characteristic response curve. Proc. Euro. Conf. Comp. Mat. (ECCM17), (2016)

[51] Wong S.I.: On Lightweight Design of Submarine Pressure Hulls. MSc Thesis, Delft University
of Technology, Netherlands (2012)

[52] Zhao Q., Neveux T., Jaubert J.N., Mecheri M., Privat R.: Design of SC-CO2 Brayton cycles
using MINLP optimization within a commercial simulator. 6th Inter. Supercritical CO2 Power
Cycles Symposium, March 27-29, 2018, Pittsburgh, USA (2018)

[53] Zarko D., Kovacic M., Stipetic S., Vuljaj D.: Optimization of electric drives for traction
applications. 19th Int. Conf. on Elec. Drives and Power Electronics (EDPE), Dubrovnik, pp.
15–32 (2017)

[M]IDACO-SOLVER User Manual Page 46

http://www.midaco-solver.com/index.php/about/publications
http://www.midaco-solver.com/index.php/about/publications

	Cover
	Overview
	Introduction
	Optimization Problem
	Problem Dimensions, Bounds and Starting Point
	Problem Function Call
	Passing Additional Input/Output Arguments
	Verifying a Problem Implementation

	MIDACO Screen and Solution
	PRINTEVAL and SAVE2FILE
	Solution History File

	MIDACO Stopping Criteria
	Hard Limit Criteria
	MAXTIME
	MAXEVAL

	Algorithmic Criteria
	FSTOP
	ALGOSTOP
	EVALSTOP

	Example Scenarios
	Single Evaluation
	CPU-Time expensive application
	CPU-Time cheap application
	Infinite Run

	MIDACO Parameter
	PARAM(1) : ACCURACY
	PARAM(2) : SEED
	PARAM(3) : FSTOP
	PARAM(4) : ALGOSTOP
	PARAM(5) : EVALSTOP
	PARAM(6) : FOCUS
	PARAM(7) : ANTS
	PARAM(8) : KERNEL
	PARAM(9) : ORACLE
	PARAM(10) : PARETOMAX
	PARAM(11) : EPSILON
	PARAM(12) : BALANCE
	PARAM(13) : CHARACTER

	Multi-Objective Optimization
	The Multi-Objective Progress (PRO) Function
	Set BALANCE exclusively to one objective

	The BALANCE parameter
	Disable full front search capability

	Pareto Front Data
	Number of Pareto Points
	Reduced filtering for many-objective optimization

	PlotTool
	Values, Colors, Colormaps and LaTeX support
	Additional Data Files and Background position
	Solution export and re-import
	Save, load and reset
	Live mode
	Zooming
	Customized MIDACO colormap

	Parallelization
	Running MIDACO in parallel
	Parallelization overhead

	Tips & Tricks
	Constraint Handling
	Highly nonlinear problems
	Large-Scale Problems
	CPU-Time expensive applications
	Solving non-linear equation systems
	Multi-modal optimization
	Submitting several starting points
	Parallel-Overclocking with MIDACO

	IFLAG Messages
	blueSolution Messages (IFLAG = 1 9)
	orangeWarning Messages (IFLAG = 10 99)
	redError Messages (IFLAG = 100 999)

	References

