
Compile-Time Defined Parallelization and Storage Order for Accelerators and CPUs
Performance Portable Parallel ProgrammingMichel Müller!

MSc ETH Zurich!
michel@typhooncomputing.com!
Aoki Laboratory, GSIC, Tokyo Institute of Technology

Background: NASA

Abstract

1. Motivation
When porting real world HPC applications for accelerators, performance portability is often one of the main goals - it is imperative that code can be
executed on different architectures with at least reasonable performance. Achieving this for accelerators is a major challenge since their
architecture is so different from CPUs.!
Often the biggest change is going from coarse grained parallelism (order of 10-100 threads per processor) to fine grained parallelism (order of
10’000 - 100’000 threads per processor). This is particularly challenging for code that is parallelized at a point in the program that is far removed
from the actual computations. The most prominent example are physical cores for weather and climate models.!
The usual approach is to privatize the code in the parallel domains, such that it can be split up into multiple smaller kernels. This leads to problems: !
1. When executing this code on CPUs, it usually leads to

substantial performance losses. It is therefore not performance
portable. !

2. It leads to a complete rewrite of the computational code, with
lots of mechanical work for simply inserting additional domains
in declarations and accessors. This is bug prone and leads to
less readable code.

Supervised by!
Dr. Takashi Shimokawabe, Tokyo Institute of Technology!
Prof. Dr. Aoki, Tokyo Institute of Technology!
Special Thanks to!
Dr. Martin Schlueter, MIDACO-Solver!
Dr. Johan Hysing, Tokyo Institute of Technology

2. Proposal

4. Performance Results

6. Conclusion and Future Work
The preprocessor framework “Hybrid Fortran” has been developed and shown to ..!
1. .. be performance portable,!
2. .. require minimum code changes for porting CPU code to accelerators,!
3. .. be general purpose capable for various data parallel problems.!
!
We will extend the work on ASUCA as well as other weather- and climate models. ASUCA
on Hybrid Fortran will become a production ready weather model. !
 
Future work includes!
• Intel MIC support!
• Support for Derived Types

3. Method

Speedup vs. 6 Core:!
10.5x with PGI OpenACC Fortran 
11x with Hybrid Fortran!
11.5x with CUDA C

In order to (1) ensure performance portability and (2) minimize
code portation, we propose the following solution:!
1. Allow both coarse grained and fine grained parallelization in the

same codebase through directives. This enables optimal
parallelization for both CPU and accelerator architectures.!

2. Automate the privatization of symbols where needed, such that
the original code can be kept with a low number of dimensions.

Hybrid Fortran[1] is an Open Source
preprocessor framework and a
Fortran language extension
developed for the task of allowing
such hybridized parallelizations as
described in (2) and transforming
such unified codes into standard x86
Fortran and Accelerator enabled
Fortran. So far, OpenMP and CUDA
Fortran parallelizations are
implemented. Hybrid Fortran currently
supports any data parallel code that
can be implemented on shared
memory systems. Storage order is
abstracted and can be defined in a
central location without any changes to array accessors and declarations.

Performance portability between CPU and accelerators is a major challenge for coarse grain parallelized codes. Hybrid Fortran offers a new
approach in porting for accelerators that requires minimal code changes and allows to keep the performance of CPU optimized loop structures and
storage orders. This is achieved through a compile-time code transformation where the CPU and accelerator cases are treated separately. Results
show minimal performance losses compared to the fastest non-portable solution on both CPU and GPU. Using this approach, five applications
have been ported to accelerators, showing minimal or no slowdown on CPU while enabling high speedups on GPU.

Theore&cal*Model*

More*Portable*

More*Architecture*
Specific*

Performance Characteristic Speedup HF on 6
Core vs. 1 Core
[A]

Speedup HF
on GPU vs 6
Core [A]

Speedup HF on
GPU vs 1 Core
[A]

1. ASUCA Physical Weather Prediction
Core (121 Kernels) [2]

Mixed, Coarse Grain Parallelism 4.47x 3.63x 16.22x

2. 3D Diffusion (Source on Github) [1] Memory Bandwidth Bound,  
Fine Grained Parallelism

1.06x 10.94x 11.66x

3. Particle Push (Source on Github) [1] Computationally Bound, Sine/
Cosine operations,  
Fine Grained Parallelism

9.08x 21.72x 152.79x

4. Poisson on FEM Solver with Jacobi
Approximation (Source on Github) [1]

Memory Bandwidth Bound, 
Fine Grained Parallelism

1.41x 5.13x 7.28x

5. MIDACO Ant Colony Solver with MINLP
Example (Source on Github) [1] [3]

Computationally Bound, Divisions,
Coarse Grain Parallelism

5.26x 10.07x 52.99x

4.2 3D Diffusion Test

4.1 ASUCA Physical Weather Prediction Core Test

[A]  
If available, comparing to reference C version, otherwise
comparing to Hybrid Fortran CPU implementation.!

Kepler K20x has been used as GPU if not stated otherwise,
Westmere Xeon X5670 has been used as CPU (TSUBAME
2.5).!

All results measured in double precision.!

The CPU cores have been limited to one socket using thread
affinity ‘compact’ with 12 logical threads.!

For CPU, Intel compilers ifort / icc with ‘-fast’ setting have
been used.!

For GPU, PGI compiler with ‘-fast’ setting and CUDA compute
capability 3.x has been used.!

All GPU results include the memory copy time from host to
device.!

 Radiation (SW + LW)!
+ Planetary Boundary Layer !
+ Surface Test!
!
NI = 128, NJ = 128, NK = 70!
100 Timesteps

Speedup vs. Reference Code on Single Core X5670 Speedup vs. Hybrid Fortran on Six Core X5670

Speedup vs. 6 Core:!
3.63x with Hybrid Fortran

4.3 Particle Push Test

On 6 Core CPU:!
Same Performance as with
Reference C Codebase

192.6& 185.0&

238.7&

0.0&

50.0&

100.0&

150.0&

200.0&

250.0&

300.0&

model& Portable&C&with&icc&;fast& Hybrid&Fortran&with&ifort&;fast&

Par$cle(Push,(6(Core(Westmere(Xeon(CPU((1(Socket)(
[Millions(of(Point(Updates(per(Second](

3363.5%

2631.0%
2921.2%

3713.0%
4018.4%

0.0%

500.0%

1000.0%

1500.0%

2000.0%

2500.0%

3000.0%

3500.0%

4000.0%

4500.0%

model% CUDA%C%603% Portable%C%with%PGI%
OpenACC%6fast%

Portable%Fortran%with%PGI%
OpenACC%6fast%

Hybrid%Fortran%with%PGI%
CUDA%Fortran%6fast%

Par$cle(Push,(1x(NVIDIA(Kepler(K20x(
[Millions(of(Point(Updates(per(Second](Theore&cal*Model*

More*Portable*

More*Architecture*
Specific*

On 6 Core CPU:!
30% Better Performance than Reference
C Codebase (Compiler Optimizations)

Speedup vs. 6 Core:!
14.22x with CUDA C!
20.07x with PGI OpenACC Fortran!
21.72x with Hybrid Fortran

subroutine wrapper(a, b, c)!
 real, dimension(NZ), intent(in) :: a, b!
 real, dimension(NZ), intent(out) :: c!
 @domainDependant{domName(x,y), domSize(NX,NY), attribute(autoDom)}!
 a, b, c!
 @end domainDependant!
 @parallelRegion{appliesTo(CPU), domName(x,y), domSize(NX, NY)}!
 call add(a, b, c)!
 @end parallelRegion!
end subroutine!
subroutine add(a, b, c)!
 real, dimension(NZ), intent(in) :: a, b!
 real, dimension(NZ), intent(out) :: c!
 integer :: z!
 @domainDependant{domName(x,y), domSize(NX,NY), attribute(autoDom)}!
 a, b, c!
 @end domainDependant!
 @parallelRegion{appliesTo(GPU), domName(x,y), domSize(NX, NY)}!
 do z=1,NZ!
 c(z) = a(z) + b(z)!
 end do!
 @end parallelRegion!
end subroutine

1D Computational Code (in Z) - No changes
needed

Fortran Declarations - No
changes needed

CPU Parallelized outside
procedure in X,Y

GPU Parallelized inside
procedure in X,Y

Specify symbols a,b,c to be
privatized in X,Y when needed

16.22%

7.83%

4.47%

0.89%
0%
2%
4%
6%
8%
10%
12%
14%
16%
18%

Hybrid%Fortran,%
Kepler%K20x%

Hybrid%Fortran,%
Fermi%M2050%

Hybrid%Fortran,%
Xeon%X5670%6%

Core%

Hybrid%Fortran,%
Xeon%X5670%1%

Core%

3.63$

1.75$

0$
0.5$
1$

1.5$
2$

2.5$
3$

3.5$
4$

Hybrid$Fortran,$Kepler$
K20x$

Hybrid$Fortran,$Fermi$
M2050$

[1] M. Müller “Hybrid Fortran Github Repository”, [Website, Updated 2014-7-24]!
http://github.com/muellermichel/Hybrid-Fortran!
[2] T. Hara et. al “Development of the Physics Library and its application to ASUCA”, 2012!
[3] M. Schlueter “MIDACO-Global Optimization Software for Mixed Integer Nonlinear Programming”, 2009!
[4] T. Shimokawabe, T. Aoki et. al “145 TFlops Performance on 3990 GPUs of TSUBAME 2.0 Supercomputer for an Operational Weather Prediction”, 2011

ASUCA on 500m grid resolution [4]

http://github.com/muellermichel/Hybrid-Fortran
mailto:michel.mueller@riken.jp
http://github.com/muellermichel/Hybrid-Fortran
mailto:michel.mueller@riken.jp

