Parallelization for Space Trajectory Optimization

Martin Schlueter Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Sagamihara, Kanagawa 252-5210, Japan Email: martin@flab.isas.jaxa.jp

Abstract—The impact of parallelization on the optimization process of space mission trajectories is investigated in this contribution. As space mission trajectory reference model, the well known *Cassini1* benchmark, published by the European Space Agency (ESA), is considered and solved here with the MIDACO optimization software. It can be shown that significant speed ups can be gained by applying parallelization.

Keywords: Space Trajectory, Cassini Mission, MIDACO, Parallelization, openMP

I. INTRODUCTION

Interplanetary space mission trajectory optimization is known to be a challenging task. Due to the highly non-linear and non-convex nature of those problems, evolutionary and hybrid algorithms are widely in use for this kind of application (see for example [5], [1], [3] or [15]). In order to investigate and compare the performance of such algorithms for space trajectory design, the European Space Agency (ESA) publishes a database of Global Trajectory Optimization (GTOP) problems (see [4]) and encourages researchers from space engineering and operational research to submit perpetuate best known solutions to these benchmarks. This benchmark set is known as the GTOP database and represents trajectory models of realworld interplanetary space missions. Table I lists the major benchmark problems from the GTOP database together with the number of decision variables, the number of submissions of perpetuate best known solutions and the time between the first and last of such solution submission. The difficulty of these problems is reflected in the time span between the first and last solution submission reported in Table I, which takes between several months and even years.

TABLE I: GTOP database benchmark problems

		Number of	Time between first
Benchmark	Variables	submissions	and last submission
Cassini1	6	3	6 Month
GTOC1*	8	2	13 Month
Messenger*	26	7	52 Month
Cassini2*	22	7	14 Month
Rosetta	22	7	6 Month
Sagas	12	1	-
Benchmark Cassini1 GTOC1* Messenger* Cassini2* Rosetta Sagas	Variables 6 8 26 22 22 22 12	submissions 3 2 7 7 7 7 1	and last submission 6 Month 13 Month 52 Month 14 Month 6 Month

*Best known solution found by MIDACO

The MIDACO software [14] was developed as a general purpose optimization solver in collaboration with ESA and EADS/Astrium Ltd and has been extensively tested on space

Masaharu Munetomo Information Initiative Center Hokkaido University Sapporo Sapporo 060-0811, Japan Email: munetomo@iic.hokudai.ac.jp

applications. MIDACO currently represents the state-of-theart for interplanetary trajectory optimization (see for example [13]) and holds three unbroken record solutions on the GTOP benchmarks listed in Table I, including the best known solution to the most difficult problem: Messenger. Readers who are interested in the algorithm of MIDACO are referred to [9], where the details of the Ant Colony Optimization (ACO) algorithm of MIDACO can be found. Readers with a particular interest in the constraint handling technique of MIDACO are referred to [10]. Note that the performance strength of MIDACO does not only rely on its fundamental ACO algorithm, but also on its sophisticated software implementation which took over 7 years of development for the current version.

In this contribution the potential benefit of parallelization for space mission planning is investigated. In order to have a rigorous numerical evaluation (with 400 test runs) and taking into account the computational effort to solve the GTOP benchmarks, the focus here is only on the smallest GTOP benchmark problem: Cassini1. The Cassini1 benchmark is based on the Cassini mission launched by NASA in 1997 and which is a famous reference among space trajectories. This mission represents an interplanetary flight from Earth to Saturn using several gravitational swing-by manoeuvres at Venus, Earth and Jupiter. Figure 1 displays the mission trajectory and highlights its major events.

Fig. 1. Interplanetary trajectory of NASA's Cassini Mission (1997)

This paper is structured as follows: In Section II, the parallelization approach by MIDACO is explained and briefly discussed. In Section III, the numerical results by MIDACO for solving the Cassinil benchmark are presented in regard to the impact of different parallelization factors. The paper finishes with some conclusions and an outlook on possible

future research. An Appendix lists detailed information for the numerical results presented in Section III.

II. THE PARALLELIZATION APPROACH BY MIDACO

A key feature of the MIDACO optimization software is its calling by *reverse communication*¹ [7]. This means, that the call to the objective function and constraints happens outside the MIDACO source code. This concept does not only guarantee a numerically stable gateway to other languages, but also enables the software to be enriched by a valuable option of distributed computing. Within one reverse communication step MIDACO does accept and returns an arbitrary large number of **P** iterates at once. Hence, those **P** iterates can be evaluated in parallel, outside and independently from the MIDACO source code. This idea of passing a block of **P** iterates at once within one reverse communication step to the optimization algorithm is taken from the code NLPQLP by Schittkowski [8].

Fig. 2. MIDACO's reverse communication loop over a block of P iterates

Figure 2 illustrates the essential reverse communication loop over the function evaluation calls and the MIDACO code. Within one loop, a block of **P** iterates (also called "individuals" in evolutionary algorithms) is evaluated regarding their objective function f(x) and constraints g(x). Then those iterates are passed together with their corresponding objective and constraint values to the MIDACO code. Within MIDACO those iterates are then processed and MIDACO calculates and returns a new block of **P** iterates that needs to be evaluated again. This concept allows an independent and user controlled distributed computing of the objective and constraint function evaluation. In other words, the parallelization option is valid for any language on any CPU architecture without the necessity of adapting the MIDACO source code itself. This includes in particular multi-core PC's, PC-Clusters and GPGPU (General Purpose Graphical Processing Unit) based computation. As the parallelization factor P can be arbitrary large, MIDACO is also suitable for massive parallelization.

As this parallelization approach aims on distributing the function evaluation calls, it is intended for problems where the function evaluation are numerically expensive to compute, which is often the case for complex real-world applications. In contrast to this, MIDACO's parallelization approach is not promising for applications, which are very cheap to compute, as the numerical overhead due to the distributed computing exceeds the benefit of parallelized function calls.

For further details on the parallelization approach by MI-DACO, please consult [11] or [12]

III. NUMERICAL RESULTS

This section displays the numerical results obtained by MIDACO on the Cassini1 benchmark taken from the GTOP database [4]. The focus of this section is the influence of the parallelization factor **P** (see Section II) on the MIDACO performance to solve this benchmark. The Cassini1 benchmark problem considers 6 continuous decision variables and 4 non-linear constraints. The best known solution to Cassini1 corresponds to an objective function value of about f(x) = 4.9307.

Table II displays the average results of 400 individual test runs on Cassini1 in regard to different parallelization factors **P** of 1,2,4 and 8. Note that $\mathbf{P} = 1$ represents the serial mode for MIDACO and acts here as the reference. Because the numerical results in Table II are based on a lot of test runs, a moderate precision of 1% was considered for the success criteria on the objective function value. The lower bounds for all variables were considered as starting point for every test run. All MIDACO parameters were set on default, thus the results represent the out-of-the-box performance of MIDACO. All test have been conducted on the same PC with Intel i7 4702MQ CPU with 2.2 GHz clock rate and 8 GB RAM. All source codes were written in C/C++ and compiled with gcc using openMP for parallelization. Note that the considered CPU is a quad-core processor supporting hyper-threading. Therefore speed ups for a parallelization factor of until $\mathbf{P} = 8$ are possible under this setup.

The abbreviations for Table II are as follows:

Р	Parallelization factor for MIDACO (see Section II)
f(x)	Average objective function value for solution x
Blocks	Average number of processed blocks (see Section II)
Eval	Average number of function evaluation in total
Time	Average total CPU-time in Seconds

TABLE II: Average Results for different P

Р	f(x)	Blocks	Eval	Time
1	4.977279	3150654	3150654	99
2	4.977542	1683175	3366349	57
4	4.977675	991475	3965898	38
8	4.977332	458177	3665418	23

The individual details on the results displayed in Table II can be found in the Appendix. The convergence curves of the 100 individual test runs corresponding to average results displayed in Table II are shown in Figure 3, Figure 4, Figure 5 and Figure 6. The average *Time* is indicated in those figures as vertical red line.

¹"I'm not entirely unconvinced that it's not totally evil" Victor Eijkhout on *reverse communication* (Computer Programming Forum, 2002).

Fig. 3. Convergence curves of 100 test runs with factor $\mathbf{P} = 1$

Fig. 4. Convergence curves of 100 test runs with factor P = 2

From Figures 3 to 6 it can be observed that only few test runs have exceptional long cpu-runtime behaviour and heavily influence the average results. In all cases, but particular in case of P=8, it can be seen that majority of test runs converges to the best known solution well under the average cpu *Time* indicated as red line.

As mentioned in Section II, the efficiency of the parallelization strategy by MIDACO depends on the cpu-time expense of the problem functions (objective and constraints). While for cheap cpu-time problems MIDACO's parallelization strategy is not promising and might even slow down the overall performance due to an increased overhead by the parallelization effort, significant speed ups for cpu-time expensive applications can be expected.

The cpu-time cost of Cassini1 on the considered CPU takes about 0.00003¹ Seconds, which is fairly cheap but still consid-

Fig. 5. Convergence curves of 100 test runs with factor P = 4

Fig. 6. Convergence curves of 100 test runs with factor P = 8

erable more expensive than trivial optimization benchmarks². However, with such a cheap evaluation cost of Cassini1 the effectiveness of MIDACO's parallelization strategy is weakened by the additional overhead of the parallelization effort. Table III compares the potential³ speed up with the actual⁴ measured speed up for the here considered parallelization factors $\mathbf{P} = 2$, $\mathbf{P} = 4$ and $\mathbf{P} = 8$.

 $^{^1\}mathrm{Average}$ Time (99) divided by average evaluation (3150654) is about 0.00003

²Note that for comparison the trivial *Sphere* benchmark $f(x) = \sum_{i=1}^{6} x_i^2$ takes less than 0.0000001 Seconds on the considered CPU setup and is therefore around two to three magnitudes faster to evaluate than the Cassinil benchmark.

³The potential speed up is calculated as average *Blocks* for P = 1 divided by average *Blocks* for considered P

⁴The potential speed up is calculated as average Time for $\mathbf{P} = 1$ divided by average Time for considered \mathbf{P}

TABLE III: Potential and actual speed up for different P

Р	Potential Speed Up	Actual Speed Up
2	1.87	1.74
4	3.18	2.61
8	6.88	4.31

From Table III it can be seen that the actual speed up is well below the potential speed for P=2 and P=3, which is expected for reasons explained above. Furthermore it can be seen from Table III that the potential speed up is very efficient. In case of the actual speed up, a maximal speed up of 4.31 times could be achieved for the factor P=8. Even though this actual speed up remains well below the potential one of 6.88, it is still a significant improvement in regard to the total cpu-time required to solve the Cassinil benchmark.

In addition to those speed ups reported in Table III it can be see in in Table II, that the average number of function evaluation is not greatly effected (increased) by the parallelization factor. If and for how large parallelization factors such behaviour could be observed would be an interesting question (see the Conclusions).

IV. CONCLUSIONS

A numerical investigation on the impact of parallelization on the optimization performance for MIDACO on the Cassini1 space trajectory benchmark has been presented. It could be shown, that the parallelization approach by MIDACO is very effective in regard to serial processed function evaluation (denoted as *Blocks* in Section II and Section III), which were considered as the potential speed up. Due to the relatively cheap cpu-time cost of the Cassini1 benchmark, the actual speed was lower as the potential one. However, still significant speed up could be realized. As expected, the highest actual speed up could be realized by the highest parallelization factor **P**=8 and was around 4.31 times in regard to the serial cpuruntime behaviour.

As the MIDACO software is suitable for massive parallelization, future research might focus on higher parallelization factors, which might be available for example in Cloud environments (see [6]) or by GPGPU programming (see [16]). In case the observed speed up behaviour in Section III does scale up for massive parallelization, significant reductions in the in the cpu-time required for space trajectory optimization could be realized by the here proposed approach.

ACKNOWLEDGEMENT

We would like to express our gratitude to the Advanced Concept Team (ACT) for creating and publishing the GTOP benchmark set. Further we would like to thank the European Space Agency (ESA-ESTEC/Contract No. 21943/08/NL/ST) and EADS Astrium Ltd (Stevenage, UK) for their professional and financial support on the MIDACO development.

REFERENCES

- Addis, B., Cassioli, A., Locatelli, M., Schoen, F., Global optimization for the design of space trajectories, Comput. Optim. Appl. 48(3), pp. 635-652, 2011.
- [2] Munawar, A.: Redesigning Evolutionary Algorithms for Many-Core Processors Ph.D. Thesis, Graduate School of Information Science and Technology, Hokkaido University, Japan, 2011
- [3] Gregoire, D, Dorronsoro, B., Bouvry, P.: New State-Of-The-Art Results For Cassini2 Global Trajectory Optimization Problem. *Acta Futura* 5, pp. 65-72, 2012. (2012)
- [4] European Space Agency (ESA) and Advanced Concepts Team (ACT). Gtop database - global optimisation trajectory problems and solutions, Software available at http://www.esa.int/gsp/ACT/inf/projects/ gtop/gtop.html, 2013.
- [5] Izzo, D.: Global Optimization and Space Pruning for Spacecraft Trajectory Design. *Spacecraft Trajectory Optimization* Conway, B. (Eds.), Cambridge University Press, pp.178-199, 2010.
- [6] Hokkaido University: High Performance Computing System. Website available at http://www.hucc.hokudai.ac.jp/ (Japanese), 2014.
- [7] Mike Dewar: NAG Blog Reverse Communication. Available at http: //blog.nag.com/2010/01/reverse-communication.html, 2010.
- [8] K. Schittkowski, NLPQLP A Fortran implementation of a sequential quadratic programming algorithm with distributed and non-monotone line search (User Guide), Report, Department of Computer Science, University of Bayreuth, Bayreuth, 2009
- [9] Schlueter, M., Egea, J.A., Banga, J.R.: Extended antcolony optimization for non-convex mixed integer nonlinear programming. Comput. Oper. Res. 36(7), 2217–2229 (2009)
- [10] Schlueter, M., Gerdts, M.: The Oracle Penalty Method. J. Global Optim. 47(2), 293–325 (2010)
- [11] Schlueter M., Gerdts M., Rueckmann J.J.: A Numerical Study of MIDACO on 100 MINLP Benchmarks. Optimization 61(7), 873–900 (2012)
- [12] Schlueter M., Munetomo M.: Parallelization Strategies for Evolutionary Algorithms for MINLP. Proceedings of the IEEE Congress on Evolutionary Computation (IEEE-CEC), 635 – 641 (2013)
- [13] Schlueter M., Erb S., Gerdts M., Kemble S., Rueckmann J.J.: MIDACO on MINLP Space Applications. Advances in Space Research, 51(7), pp. 1116-1131, 2013.
- [14] Schlueter M.: MIDACO Global Optimization Software for Mixed Integer Nonlinear Programming. Software available at http://www. midaco-solver.com, 2014
- [15] Stracquadanio, G., Ferla, A., Felice, M., Nicosia, G.: Design of robust space trajectories. Research and Development in Intelligent Systems XXVIII, 341–354, Springer London, 2011.
- [16] Michel Mueller: Typhoon Computing Solutions for HPC. Software available at http://typhooncomputing.com/, 2014.

APPENDIX

Here the individual results of all 400 test runs corresponding to Table II are given in detail. Note that Table II summarizes the here displayed results in terms of average values.

Note that for the highest parallelization factor P=8 in two cases (test run Nr. 2 and Nr. 53) the cpu-time was less than 0.5 Seconds and is reported as zero in Table X, because the time was measured as integer and rounded to the next integer value.

Run f(x)BlocksEvalTime4.977984 4.979983 4.979983 4.979761 4.977521 4.976461 4.977437 4.979034 4.979987 4.979858 4.968665 4.979537 4.972406 4.979983 4.978690 4.979224 4.979473 4.979983 4.972406 4.977124 4.978985 4.974628 4.975823 4.979996 4.979959 4.979964 4.979935 4.964064 4.979983 4.979994 4.979689 4.979963 4.976789 4.979696 4.979988 4.975766 4.977942 4.972406 4.977991 4.965957 4.980000 4.979846 4.963218 4.979963 4.972406 4.979983 4.979983 4.972406 4.979964 4.979722

TABLE IV: Results of 100 MIDACO test runs with factor P=1

TABLE V: continuation of Table IV

Run	f(x)	Blocks	Eval	Time
51	4.954630	150707	150707	5
52	4.979995	4124385	4124385	130
53	4.979983	915442	915442	29
54	4.978756	1831653	1831653	58
55	4.979959	17949198	17949198	560
56	4.979964	7208676	7208676	228
57	4.961516	3929263	3929263	123
58	4.979734	1383746	1383746	44
59	4.979983	823451	823451	26
60	4.979983	812499	812499	26
61	4.979417	1452461	1452461	45
62	4.979983	782138	782138	25
63	4.979983	768841	768841	24
64	4.979983	762085	762085	25
65	4.976705	2340658	2340658	73
66	4.975556	5365385	5365385	169
67	4.972406	2020084	2020084	64
68	4.978712	11389810	11389810	361
69	4.979878	4231856	4231856	134
70	4.974724	794829	794829	25
71	4.979974	7734391	7734391	242
72	4.979863	1765480	1765480	56
73	4.978351	967558	967558	30
74	4.978690	2383832	2383832	75
75	4.979634	951710	951710	31
76	4.979945	933795	933795	29
77	4.979903	1863150	1863150	59
78	4.977014	1142396	1142396	36
79	4.979903	1751927	1751927	56
80	4.979327	2662533	2662533	83
81	4.978690	2239531	2239531	71
82	4.977057	7272740	7272740	227
83	4.978822	1127953	1127953	35
84	4.969337	2090187	2090187	67
85	4.972406	1775203	1775203	59
86	4.978269	467810	467810	15
87	4.975477	2193450	2193450	69
88	4.979900	6094782	6094782	190
89	4.974309	1929402	1929402	61
90	4.979973	3082588	3082588	97
91	4.979991	11454753	11454753	359
92	4.979900	5964797	5964797	186
93	4.979903	1651414	1651414	57
94	4.979950	13044396	13044396	409
95	4.978598	2195714	2195714	69
96	4.977777	415837	415837	15
97	4.978018	1422327	1422327	51
98	4.977777	393412	393412	13
99	4.972406	1433660	1433660	45
100	4.972406	1563214	1563214	49
Average	4.977279	3150654	3150654	99

TABLE VI: Results of 100 MIDACO test runs with factor **P**=2

TABLE VII: Continuation of Table VI

Run	f(x)	Blocks	Eval	Time		Run
1	4.979626	3723189	7446378	125	1	51
2	4.979811	823985	1647970	29		52
3	4.977298	1309535	2619070	48		53
4	4.979799	3648436	7296872	121		54
5	4.977298	1290976	2581952	44		55
6	4.966056	3038267	6076534	102		56
7	4.979846	675180	1350360	23		57
8	4.976996	557607	1115214	19		58
9	4.979880	6101350	12202700	204		59
10	4.974892	3093822	6187644	102		60
11	4.976996	572843	1145686	19		61
12	4.978202	1131451	2262902	39		62
13	4.977298	1251422	2502844	41		63
14	4.979998	218417	436834	8		64
15	4.979990	11620840	23241680	387		65
16	4.971464	1328647	2657294	46		66
17	4.976073	3521386	7042772	118		67
18	4.975577	2067524	4135048	69		68
19	4.969733	614025	1228050	21		69
20	4.974039	501268	1002536	16		70
21	4.979424	1106061	2212122	38		71
22	4.978912	1884980	3769960	63		72
23	4.971760	3386629	6773258	114		73
24	4.979975	589672	1179344	20		74
25	4.979651	1409073	2818146	47		75
26	4.977581	2869706	5739412	98		76
27	4.979507	1294413	2588826	44		77
28	4.976996	433889	867778	15		78
29	4.979587	1623279	3246558	55		79
30	4.979417	2433451	4866902	81		80
31	4.980001	2029523	4059046	69		81
32	4.978123	4268357	8536714	143		82
33	4.979233	484752	969504	17		83
34	4.977714	2129517	4259034	72		84
35	4.979669	322493	644986	11		85
36	4.979781	4134746	8269492	137		86
37	4.979704	726053	1452106	24		87
38	4.977835	1966773	3933546	66		88
39	4.979921	898723	1797446	30		89
40	4.976903	1266382	2532764	44		90
41	4.977893	407239	814478	13		91
42	4.979271	3232605	6465210	110		92
43	4.976996	350835	701670	12		93
44	4.977641	666430	1332860	23		94
45	4.979924	595292	1190584	20		95
46	4.979951	1088631	2177262	37		96
47	4.974799	1061696	2123392	36		97
48	4.977274	274627	549254	9		98
49	4.979951	1069341	2138682	36		99
50	4.979661	354971	709942	13]	100
						Average

Run	f(x)	Blocks	Eval	Time
51	4.978162	3920970	7841940	131
52	4.979973	2052396	4104792	69
53	4.960803	321004	642008	11
54	4.979086	342840	685680	12
55	4.979910	3320904	6641808	112
56	4.975623	690574	1381148	24
57	4.980005	3360194	6720388	114
58	4.979951	1015462	2030924	34
59	4.979918	563052	1126104	19
60	4.977835	1816105	3632210	62
61	4.979999	3015752	6031504	103
62	4.975951	513609	1027218	17
63	4.979811	1099075	2198150	38
64	4.978982	768515	1537030	26
65	4.967622	287169	574338	9
66	4.979999	2977349	5954698	101
67	4.976951	1259014	2518028	42
68	4.978839	264759	529518	9
69	4.969801	158413	316826	6
70	4.979626	3387947	6775894	112
71	4.979252	2021042	4042084	68
72	4.972052	731549	1463098	24
73	4.979959	705007	1410014	24
74	4.979986	1157456	2314912	40
75	4.978982	712109	1424218	25
76	4.979045	1921115	3842230	64
77	4.975886	374254	748508	12
78	4.979651	1029597	2059194	35
79	4.967682	4036956	8073912	134
80	4.979926	2025497	4050994	68
81	4.979914	412101	824202	13
82	4.979574	321976	643952	11
83	4.978941	575479	1150958	19
84	4.979910	3193435	6386870	106
85	4.979982	1514681	3029362	50
86	4.979713	3741935	7483870	125
87	4.970984	873412	1746824	29
88	4.979567	2456899	4913798	81
89	4.979484	828254	1656508	27
90	4.979945	688771	1377542	23
91	4.978960	565252	1130504	19
92	4.969893	1604404	3208808	54
93	4.975888	2784096	5568192	91
94	4.979974	1167624	2335248	39
95	4.979792	845008	1690016	29
96	4.977131	1295013	2590026	43
97	4.979001	990827	1981654	34
98	4.979994	1413400	2826800	48
99	4.978966	2745732	5491464	93
100	4.969381	2999164	5998328	100
Average	4.977542	1683175	3366349	57
0-	· · · · · · · · · · · · · · · · · · ·			

TABLE VIII: Results of 100 MIDACO test runs with factor P=4

TABLE IX: Continuation of Table VIII

Eval

 Time

					ı	Kull	J(x)	DIOCKS
Run	f(x)	Blocks	Eval	Time		51	4.972068	225980
1	4.968922	1431676	5726704	54		52	4.978406	1346624
2	4.971511	833567	3334268	31		53	4.977415	1213581
3	4.973130	1063314	4253256	40		54	4.979745	2950371
4	4.977000	269367	1077468	10		55	4.979952	948251
5	4.960430	1502910	6011640	57		56	4.979621	669042
6	4.976738	398792	1595168	15		57	4.980004	1345300
7	4.979103	879457	3517828	33		58	4.979786	1385440
8	4.979873	681842	2727368	26		59	4.979852	345289
9	4.979569	368704	1474816	14		60	4.972603	530454
10	4.979970	427066	1708264	16		61	4.979938	984685
11	4.979131	1414875	5659500	53		62	4.979947	1445522
12	4.979688	423417	1693668	16		63	4.980003	786099
13	4.976741	711161	2844644	26		64	4.979949	565311
14	4.978922	46636	186544	2		65	4.979115	2822195
15	4.979097	2022189	8088756	78		66	4.980000	1368590
16	4.979747	1366228	5464912	51		67	4.977688	1483076
17	4.976741	695877	2783508	27		68	4.979688	215739
18	4.979084	470328	1881312	18		69	4.975184	264689
19	4.976741	690255	2761020	26		70	4.979514	278619
20	4.978605	904992	3619968	35		71	4.973130	835188
21	4.976741	685592	2742368	27		72	4.977688	1318261
22	4.979869	817873	3271492	31		73	4.978491	973650
23	4.979961	306488	1225952	11		74	4.973130	828223
24	4.977321	170120	680480	7		75	4.979232	450134
25	4.977688	1765484	7061936	68		76	4.972918	399605
26	4.979676	5000549	20002196	187		77	4.979584	666744
27	4.973130	985374	3941496	37		78	4.979787	1410684
28	4.973130	975521	3902084	38		79	4.977073	1600335
29	4.979871	304398	1217592	12		80	4.979688	203148
30	4.977531	142290	569160	5		81	4.979317	117888
31	4.979263	2615295	10461180	97		82	4.978090	397275
32	4.975010	883368	3533472	34		83	4.979962	310188
33	4.974607	2602611	10410444	98		84	4.976052	2147969
34	4.966905	799476	3197904	32		85	4.979965	818121
35	4.978406	1439354	5757416	55		86	4.979988	1663266
36	4.977864	134178	536712	6		87	4.973769	1074652
37	4.980004	2539428	10157712	98		88	4.979786	1324276
38	4.978637	504270	2017080	19		89	4.979999	398502
39	4.978552	2132687	8530748	81		90	4.978531	121201
40	4.979065	2013011	8052044	78		91	4.979899	741904
41	4.973130	930710	3722840	36		92	4.979688	156422
42	4.979682	202715	810860	8		93	4.976703	301461
43	4.979688	310655	1242620	12		94	4.973130	758712
44	4.973130	926380	3705520	35		95	4.979887	941007
45	4.979311	769244	3076976	29		96	4.979688	137513
46	4.979073	1469810	5879240	55		97	4.979912	1025244
47	4.979361	1468505	5874020	55		98	4.979911	2105429
48	4.980001	377724	1510896	15		99	4.978349	416583
49	4.978368	3477869	13911476	134		100	4.979139	427313
50	4.978851	548068	2192272	21		Average	4.977675	991475

Run f(x)Blocks EvalTime4.979992 4.979447 4.979746 4.974262 4.977147 4.961017 4.978063 4.967886 4.980005 4.979967 4.977202 4.979381 4.979944 4.974159 4.961017 4.974036 4.979789 4.979944 4.979868 4.979306 4.979613 4.961017 4.971417 4.979946 4.979515 4.979360 4.979360 4.976555 4.979985 4.961017 4.977316 4.979828 4.979092 4.976318 4.979564 4.979984 4.979036 4.979067 4.975697 4.976327 4.971829 4.968860 4.979860 4.979394 4.978357 4.979627 4.978478 4.978799 4.978677 4.977714

TABLE XI: Continuation of Table X

Run	f(x)	Blocks	Eval	Time
51	4.978654	587892	4703136	29
52	4.979472	524771	4198168	25
53	4.979735	3679	29432	0
54	4.979958	48590	388720	3
55	4.976677	3310001	26480008	161
56	4.979652	2145672	17165376	104
57	4.979845	2265321	18122568	111
58	4.979467	245022	1960176	12
59	4.978962	285583	2284664	14
60	4.979886	943349	7546792	46
61	4.976318	261912	2095296	13
62	4.974684	235505	1884040	12
63	4.978243	107857	862856	5
64	4.979860	169262	1354096	8
65	4.979975	59168	473344	3
66	4.979931	240143	1921144	12
67	4.970576	74366	594928	4
68	4.971739	1421631	11373048	69
69	4.979433	549763	4398104	27
70	4.978824	467981	3743848	23
71	4.974357	294552	2356416	14
72	4.979358	15721	125768	1
73	4.975325	61921	495368	3
74	4.977317	1827550	14620400	90
75	4.979775	288764	2310112	14
76	4.978663	154960	1239680	8
77	4.980001	337983	2703864	17
78	4.979135	278835	2230680	13
79	4.972899	54674	437392	3
80	4.979965	1082869	8662952	53
81	4.979860	133399	1067192	7
82	4.979850	199851	1598808	10
83	4.979456	282213	2257704	13
84	4.978636	203299	1626392	11
85	4.978943	951734	7613872	46
86	4.979890	119626	957008	6
87	4.979795	674112	5392896	33
88	4.979009	206281	1650248	11
89	4.979715	614780	4918240	30
90	4.978799	414409	3315272	21
91	4.979278	118087	944696	5
92	4.979860	117163	937304	6
93	4.979996	368753	2950024	18
94	4.977104	782207	6257656	39
95	4.979746	763346	6106768	37
96	4.979961	185314	1482512	10
97	4.975756	210025	1680200	10
98	4.972595	354758	2838064	17
99	4.979150	3660198	29281584	179
100	4.973305	138900	1111200	7
Average	4.977332	458177	3665418	23

TABLE X: Results of 100 MIDACO test runs with factor P=8