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Abstract—This contribution addresses the question if and how
the impact of parallelization can influence the performance of an
evolutionary algorithm on constrained mixed-integer nonlinear
optimization problems. On a set of 200 MINLP benchmarks
the performance of the MIDACO solver is numerically assessed
with gradually increasing parallelization factor from 1 to 100.
The results demonstrate that the efficiency of the algorithm can
be significantly improved by parallelized function evaluation.
Furthermore, the results indicate that the scale-up behaviour on
the efficiency resembles a linear nature, which implies that this
approach will even be promising for very large parallelization
factors. The presented research is especially relevant to cpu-time
consuming real-world applications, where only a low number
of serial processed function evaluation can be calculated in
reasonable time.

I. INTRODUCTION

This contribution deals with the optimization of problems
known as mixed-integer nonlinear programs (MINLP). The
considered MINLP is stated mathematically in (1), where
f(x, y) denotes the objective function to be minimized. In
(1), the equality constraints are given by g1,...,me(x, y) and
the inequality constraints are given by gme+1,...,m(x, y). The
solution vector x contains the continuous decision variables
and the solution vector y contains the discrete decision vari-
ables (also called integers). Furthermore, some box constraints
as xl, yl (lower bounds) and xu, yu (upper bounds) for the
decision variables x and y are considered in (1).

Minimize f(x, y) (x ∈ Rncon , y ∈ Znint)

subject to: gi(x, y) = 0, i = 1, ...,me ∈ N
gi(x, y) ≥ 0, i = me + 1, ...,m ∈ N
xl ≤ x ≤ xu (xl, xu ∈ Rncon)

yl ≤ y ≤ yu (yl, yu ∈ Nnint)

(1)

Optimization of MINLP problems is a young and growing
field in the evolutionary computing community, see e.g. Babu
and Angira [1], Cardoso [2], Costa and Oliveira [3], Deep et al.
[4], Glover [6], Liang et al. [11], Mohammed [12], Munawar
[13], Wasanapradit et al. [27], Young et al. [29], Yiqing et
al. [28] or Yue et al. [31]. One advantage of evolutionary
algorithms is their robustness towards the analytical properties

of the objective and constraint functions. Therefore, in above
MINLP (1) the functions f(x, y) and g(x, y) are considered
as general black-box functions without any requirements, such
as differentiability or smoothness. Another advantage of evo-
lutionary algorithms is their capability to (greatly) benefit
from parallelization, see for example Du et al. [14], Laessig
and Sudholt [10], Gupta [10], Sakuray [16], Sudholt [26] or
Yingyong et al [30]. One of the most popular strategies to
use parallelization in evolutionary algorithms is the distributed
computing of the problem function evaluations. This strategy
is sometimes denoted as co-evaluation.

The here presented numerical study investigates the impact
of a varying co-evaluation factor on the performance of an
evolutionary optimization algorithm on a set of 200 MINLP
benchmarks (see Schittkowski [23]), which mostly originate
from the well-known GAMS MINLPlib library [9]. Here
considered benchmark instances consist of up to 205 variables
and 283 constraints, including up to 100 equality constraints
(see the Appendix for details on the benchmark instances). The
focus of this paper is to investigate and measure the efficiency
of parallelized function evaluation calls on the algorithmic
performance. As numerical solver, the MIDACO optimization
software is used, which is based on an evolutionary algorithm
especially developed for mixed-integer problems and capable
of seamless parallelization of function evaluation calls.

This paper is structured as follows: In Section II a brief
overview on the MIDACO algorithm is given with an emphasis
on its parallelization approach. In Section III the numerical
results of 100 individual test runs on the set of 200 MINLP
benchmarks are illustrated and discussed. In Section IV a
summary and general conclusions are presented. A compre-
hensive Appendix lists detailed individual information on all
considered benchmarks.

II. MIDACO OPTIMIZATION ALGORITHM

MIDACO stands for Mixed Integer Distributed Ant Colony
Optimization. The evolutionary algorithm within MIDACO is
based on the ant colony optimization metaheuristic for con-
tinuous search domains proposed by Socha and Dorigo [25]
and was extended to mixed-integer domains by Schlueter et al.
in [17]. For constrained optimization problems the algorithm



applies the Oracle Penalty Method which was introduced in
Schlueter and Gerdts [18]. While the MIDACO algorithm
is conceptually designed as general black-box solver, it has
proven its effectiveness especially on challenging interplan-
etary space trajectory design problems (see Schlueter [21]),
where it holds several best known record solutions on bench-
marks provided by the European Space Agency [5]. It is
furthermore the first algorithm that was able to successfully
solve interplanetary trajectory problems formulated as mixed-
integer problems, where the sequence of fly-by planets was
considered as changeable integer optimization variables (see
Schlueter et. al. [20].

A. MIDACO’s Parallelization Approach

The parallelization approach considered here aims on dis-
tributing the problem function evaluation. This approach is
sometimes referred to as co-evaluation. The MIDACO solver
optimization software easily enables this kind of paralleliza-
tion due to its reverse communication architecture. Reverse
communication means here that the call of the objective and
constraint functions happens outside and independently of the
MIDACO source code.

Within a single reverse communication loop, MIDACO does
accept and returns an arbitrary large number of P iterates x
(also called ”solution candidates” or ”individuals”) at once.
Hence, those P iterates can be evaluated in parallel, outside
and independently from the MIDACO source code. This
idea of passing a block of P iterates at once within one
reverse communication step to the optimization algorithm was
originally introduced by the code NLPQLP by Schittkowski
[24].

Fig. 1. Reverse communication loop with block of iterates.

Figure 1 illustrates the reverse communication loop where
a block of P iterates is evaluated regarding their objective
function f(x) and constraints g(x) and then passed to the
MIDACO optimization algorithm, which then again returns a
new block of P iterates to be evaluated.

This concept allows an independent and user controlled
distributed computing of the objective and constraint function.
In other words: The displayed parallelization option is valid
for any language and any CPU architecture. This includes in

particular multi-core PC’s, PC-Clusters and GPGPU (General
Purpose Graphical Processing Unit) based computation. In
case of MIDACO, the parallelization factor P can furthermore
be any arbitrary large integer value, enabling a seamless and
massive parallelization. As this parallelization approach aims
on distributing the function evaluation calls, it is intended for
problems where the function evaluation are numerically ex-
pensive to compute, which is often the case for complex real-
world applications. For further details on the parallelization
approach by MIDACO, please consult [22] or [19].

III. NUMERICAL RESULTS

This section presents the numerical results obtained by
MIDACO (5.0 beta version) on the set of 200 MINLP bench-
mark problems, provided by Schittkowski [23]. In total, 100
executions on the full set of 200 problem instances have been
conducted. Each execution considered a different paralleliza-
tion factor (see Section II-A) and a different random seed. With
each execution, the parallelization factor was incrementally
increased from one up to one hundred. For each individual
problem out of the library a maximal number of function
evaluation budget of ten million was assigned. No time limit
was enforced on any run. Each individual test run on each
problem was either stopped if the maximal evaluation budget
was reached, or if the global1 optimal solution was obtained.

The criteria for reaching a global optimal solution (x∗, y∗)
by an approximation (x̂, ŷ) is given in Equation (2).

f(x̂, ŷ) ≤ f(x∗, y∗) +
‖f(x∗, y∗)‖

100

‖g(x̂, ŷ)i=1,...,me‖ ≤ 0.01

g(x̂, ŷ)i=me+1,...,m ≥ − 0.01

(2)

Equation (2) implies that a test run was considered success-
ful, if the approximative solution (x̂, ŷ) reached by MIDACO
was as close as 1% to the global optimal solution objective
function value f(x∗, y∗) while satisfying all constraints with a
precision of at least 0.01. Note that the tolerance of 0.01 for the
constraint violation is chosen here rather moderate. This is due
to the relatively large number of (up to one hundred) equality
constraints in several benchmark instances (see Appendix). For
real-world problems, solutions with higher precision in the
constraint satisfaction can normally be achieved easily with
refinement runs. The lower bounds of each problem instance
were used as starting point and the original bounds2 provided
by Schittkowski [23] were considered for each problem.

1The best known numerical f(x, y) values provided in Schittkowski [23]
were used as global optimal solutions throughout this study.

2Note that the original bounds provided in Schittkowski [23] on the problem
instance are sometimes huge in the context of evolutionary computing,
where the entire search space is sampled. This makes some of the instance
exceptionally hard to solve with evolutionary methods.



Except for the parallelization factor, all MIDACO parameters
were set to default.

Table I displays the average number of optimal and feasible
solutions obtained for various test runs on the full set of 200
MINLP benchmarks. The average values displayed for each
run is calculated respectively from the history of all previous
runs up to the current one. The number of each run equals the
parallelization factor used in such run. The abbreviations for
Table I are as follows:

Run = P : Execution of MIDACO on all benchmarks
Optimal : Average number of global optimal solutions
Feasible : Average number of feasible solutions
Blocks : Average number of performed blocks
Evaluation : Average number of performed evaluation
Time : Cpu-time of individual test run

All numerical runs were conducted on a Desktop computer
with XEON cpu with 3.47GHz clock-rate, 4GB RAM memory
and six physical cores. The total time to calculate all 100
executions on the full benchmark library took 196253 seconds,
which is around two and a half days. For the results presented
in this study the co-evaluation of objectives and constraints
was calculated on a single thread and not distributed by
common parallelization schemes, such as OpenMP [8] or MPI
[8]. The reason is that all benchmark function in this study take
only milliseconds to compute and any actual parallelized com-
puting scheme would introduce a computing overhead which
would in fact increase overall calculation times rather than
reducing them. Note that the presented results nevertheless
accurately represent the factor of reduced serial processed
function evaluation and that the results are therefore fully valid
to estimate the performance gain in parallel executed function
evaluation for cpu-time intensive real-world applications.

TABLE I: Average number of optimal and feasible solutions

Run Optimal Feasible Blocks Evaluation Time
= P

1 160.0 183.0 2747356 2747356 2358.5
10 158.9 180.2 284719 2847195 2144.4
20 158.1 180.1 162785 3255716 2119.4
30 157.9 180.5 107293 3218808 2042.9
40 157.7 180.4 82824 3312999 2017.9
50 157.3 180.2 67314 3365719 1945.6
60 157.1 180.1 57795 3467717 1918.6
70 156.7 179.9 51749 3622491 1875.0
80 156.5 179.7 46525 3722027 1846.8
90 156.3 179.5 39894 3590513 1804.6

100 156.0 179.4 38214 3821471 1746.0

From Table I it can be seen that MIDACO achieved in its
first execution (which had a parallelization factor of one and
therefore no actual parallelization) a number of 183 feasible

solutions from which 160 satisfied the global optimality crite-
ria in Equation (2). It is important to note that the number
of processed blocks in the first run equals the number of
evaluation, which where about 2.7 million (2747356). Table
I illustrates that the average number of global and feasible
solution gradually decreases, while the average number of
function evaluation increases. This is the expected behaviour,
as each run was bound to a maximal budget of 10 million
function evaluation. In Table I the column of Blocks strikingly
illustrates how the average number of processed blocks drasti-
cally decreases with increasing parallelization factor. While in
the first run around 2.7 blocks had to be processed on average,
it is only a 38,214 blocks in the last run with a parallelization
factor of 100. Therefore a reduction of around 2747356

38214 ≈ 71.9
times in the number of processed blocks, while the number of
optimal solved instances dropped only around 2.5% (156 in
comparison to 160).

A minor observation concerns the calculation times of each
run. While the first run consumed 2358 seconds, the last
run consumed only 1746 seconds. This observation can be
explained by the reduced communication overhead between
the MIDACO algorithm and the problem function evaluation
(see Section II-A), if blocks with large number of evaluation
are processed within the reverse communication loop (see
Figure 1).

Figure 2 and Figure 3 display the average and individual
number of optimal and feasible solutions obtained by each of
the 100 runs on the full benchmark library.

Fig. 2. Inidividual and average optimal solutions at run 1 to 100.

From Table I and Figure 2 and Figure 3 it can be seen,
how the MIDACO algorithm benefits in drastically reducing
its average number of processed blocks, while still maintain a
high number of feasible and global optimal solutions.

In order to give a more sophisticated answer to the question,
how the efficiency of the algorithm scales with the paralleliza-



Fig. 3. Inidividual and average feasible solutions at run 1 to 100.

tion factor, a new criteria for the algorithmic efficiency is
now introduced. Based on the first run, which exemplifies the
unparalleled performance, the ”Efficiency” should be measured
as given in Equation (3).

Efficiency =
#Optimal average

#Optimal first run
× #Blocks first run

#Blocks average
(3)

Equation (3) measures the ”Efficiency” based on a multi-
plication of a ratio of optimal obtained solutions with a ratio
of required blocks. Because the number of optimal solutions
is desired to be as high as possible, the average number of
optimal solutions appear in the numerator of the ratio, while
the number of optimal solutions from the first run appear in
the denominator of the ratio. Contrary to desired number of
optimal solutions, the number of blocks is desired to be as
low as possible and hence the blocks required in the first run
appear in the numerator, while the average number of blocks
appear in the denominator. The efficiency measure given by
Equation 3 can be calculated for each of the 100 runs on the
full library of test problems. Figure 4 displays the efficiency
measure for all 100 runs.

It is remarkable to see from Figure 4 that the scale up
effect on the algorithmic efficiency resembles a nearly linear
behaviour, which appears to be particularly robust for par-
allelization factors below 30. This behaviour indicates that
parallelization will further significantly improve performance
even for much larger parallelization factors. In regard to the
concrete set of 200 instances, it can be seen from Figure
4, that a parallelization factor of 10 makes the MIDACO
algorithm nearly 10 times more effective as in serial mode;
thus, the parallelization is as most effective as possible for
low parallelization factors. From Figure 4 it can also be
seen, that a parallelization factor of 100 still makes the

Fig. 4. Efficiency measure in regard to parallelization factor

MIDACO algorithm about 71 times more effective, which was
also highlighted previously in this section.

A. Additional Numerical Results

In addition to the previously presented numerical results
investigating the parallelization effect on MIDACO, a separate
numerical test run investigating MIDACO’s capability to locate
global optimal solutions is shown here. In contrast to previous
numerical runs, which considered 100 executions applying a
maximal function evaluation budget of 10 millions to each
problem, a single (unparalleled) run on the full library with
a time limit of 3 hours (10080 seconds) for each problem
instance is considered here. Purpose of this additional numer-
ical run is to evaluate the fundamental potential of MIDACO
to solve even the harder instances of the test bed. Again,
the lower bounds of each problem instance were used as
starting point and the original bounds were considered for each
problem. All MIDACO parameter were set to default.

Table II lists a summary of the results obtained by MIDACO
on the full library. Note that the execution of this test run took
3.7 days of cpu-time.

TABLE II: MIDACO performance on 200 MINLP’s
Number of problems in total: 200
Number of optimal solutions: 172
Number of feasible solutions: 194
Average evaluation: 7548745
Average cpu-time: 1635.3 sec
Total cpu-time: 3.7 days

From Table II it can be seen that MIDACO is able to obtain
in 194 out of 200 cases a feasible solution. Out of this 194
feasible solutions, 172 solutions were globally optimal. The
average number of function evaluation took around 7.5 million



which where processed in about half an hour (1635 sec) on
average.

The Appendix lists the individual MIDACO results on each
of the 200 MINLP instances. In regard to the number of
variables, MIDACO is able to solve the largest instance in
the set (see benchmark ”PARALLEL” in Table IV) to global
optimality in about 15 minutes. This ”PARALLEL” instance
considered 205 variables and 115 constraints, including 81
equality constraints. Other large instances that could be solved
to global optimality include ”M7” with 114 variables and
211 constraints or ”MINLPHIX” with 84 variables and 92
constraints. Several instances with over a hundred varibales
and/or constraints are solved to a feasible but not global
optimal solution, see e.g. benchmark M6, ST E31, RAVEM
and EX1244. Note that the majority of problems containing
only few variables and/or constraints are solved to global
optimality within less than 0.05 seconds and most instances
with ten’s of variables and/or constraints are solved within
few seconds or even below a second.

IV. CONCLUSION

A numerical assessment of the performance scalability of
an evolutionary optimization algorithm on a set of 200 mixed
integer nonlinear programming instances was presented. The
MIDACO optimization software was chosen to represent the
evolutionary algorithm as it offers mixed-integer capability
combined with a seamless parallelization feature (see Section
II-A). In Section III it was demonstrated, that the performance
in obtaining (feasible) global optimal solutions can be signif-
icantly improved by evaluating blocks of solution candidates
in parallel. Performance was understood here in a reduction of
serial processed blocks, while maintaining a high number of
optimal solutions. As many real-world applications are cpu-
time intensive, the required number of serial processed blocks
often marks the bottleneck in optimizing such applications.
Hence the presented results are especially relevant to this kind
of cpu-time intensive real-world applications.

Another interesting finding of this study concerns the scale-
up behaviour observed. From Figure 4 in Section III it could
be seen that the scale-up effect resembles a nearly linear
behaviour, whereas especially for low parallelization factors
(less than 30) the efficiency gain was close to its theoretical
maximum. Such behaviour implies that the algorithm will fur-
ther significantly benefit from even much larger parallelization
factors. Given that parallelization is a growing trend in cpu-
architecture, this observation is encouraging.
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APPENDIX

This Appendix lists all 200 MINLP benchmark instances
with their name and number and type of variables and con-
straints in Table IV. It furthermore reports the MIDACO (5.0
beta version) default performance with a maximal cpu-time
budget of 3 hours (10080 seconds). For detailed information on
the global optimality criteria see Section III. Note that in two
benchmark cases (ST TEST1 and WU 4) the global optimal
solution lies on the lower bounds and hence equals the starting
point, which implies a reported single evaluation in Table IV.
Further note that in some cases where the full cpu-time budget
of 3 hours (10080 seconds) was performed (and hence no
global optimal solution was reached), the reported number of
function evaluation exceeded 10,000,000,000 (in words: ten
thousand million) and the number of evaluation is reported
as asterisk in Table IV. The desire to reduce the number of
(serial processed) function evalution by parallelization (see
Section II-A), which is the key motivation of this contribution,
becomes evident by such large values.

TABLE III: Abbreviations used in Table IV

Abbreviation Description

Name Name of the benchmark instance
n Number of variables (in total)
ni Number of integer variables
m Number of constraints (in total)
me Number of equality constraits

Evaluation Amount of function evaluation
Time Amound of CPU-time (in seconds)

Status: Solution status obtained by MIDACO

√
Status = Global optimum reached

- Status = Feasible local solution
x Status = Infeasible solution



TABLE IV: Individual MINLP benchmarks results (continued)

Benchmark Details MIDACO Performance

Name n ni m me Evaluation Time Status
MITP1 5 3 1 0 68 0.0

√

MITP2 5 3 7 0 34242 0.0
√

QIP1 4 4 4 0 47 0.0
√

ASAADI11 4 3 3 0 32 0.0
√

ASAADI12 4 4 3 0 173 0.0
√

ASAADI21 7 4 4 0 85 0.0
√

ASAADI22 7 7 4 0 180 0.0
√

ASAADI31 10 6 8 0 25607 0.0
√

ASAADI32 10 10 8 0 6258 0.0
√

DIRTY 25 13 10 0 2479 0.0
√

BRAAK1 7 3 2 0 547 0.0
√

BRAAK2 7 3 4 0 2938 0.0
√

BRAAK3 7 3 4 0 3666 0.0
√

DEX2 2 2 2 0 12 0.0
√

FUEL 15 3 15 6 1813806 2.0
√

WP02 2 1 2 0 9 0.0
√

NVS01 3 2 3 1 105489 0.1
√

NVS02 8 5 3 3 80510 0.1
√

NVS03 2 2 2 0 213 0.0
√

NVS04 2 2 0 0 42 0.0
√

NVS05 8 2 9 4 609879052 10800.0 -
NVS06 2 2 0 0 31 0.0

√

NVS07 3 3 2 0 199 0.0
√

NVS08 3 2 3 0 2353 0.0
√

NVS09 10 10 0 0 178 0.0
√

NVS10 2 2 2 0 106 0.0
√

NVS11 3 3 3 0 178 0.0
√

NVS12 4 4 4 0 482 0.0
√

NVS13 5 5 5 0 573 0.0
√

NVS14 8 5 3 3 27949 0.0
√

NVS15 3 3 1 0 44 0.0
√

NVS16 2 2 0 0 88 0.0
√

NVS17 7 7 7 0 1370 0.0
√

NVS18 6 6 6 0 639 0.0
√

NVS19 8 8 8 0 1668 0.0
√

NVS20 16 5 8 0 106363 0.1
√

NVS21 3 2 2 0 46938 0.0
√

NVS22 8 4 9 4 1255608863 1047.3
√

NVS23 9 9 9 0 991 0.0
√

NVS24 10 10 10 0 10205 0.0
√

GEAR 4 4 0 0 9 0.0
√

GEAR2 28 24 4 4 38616 0.1
√

GEAR2A 28 24 4 4 150078 0.2
√

GEAR3 8 4 4 4 34901 0.0
√

GEAR4 6 4 1 1 102626 0.1
√

M3 26 6 43 0 3184587 5.1
√

M6 86 30 157 0 ********** 10800.0 -
M7 114 42 211 0 1730194451 10514.2

√

FLOUDAS1 5 3 5 2 2152 0.0
√

FLOUDAS2 3 1 3 0 289 0.0
√

FLOUDAS3 7 4 9 0 6540 0.0
√

FLOUDAS4 11 8 7 3 3455656 3.2
√

FLOUDAS40 11 8 7 3 6460 0.0
√

FLOUDAS5 2 2 4 0 22 0.0
√

FLOUDAS6 2 1 3 0 29 0.0
√

SPRING 17 12 8 5 2068 0.0
√

TABLE V: Individual MINLP benchmarks results (continued)

Benchmark Details MIDACO Performance

Name n ni m me Evaluation Time Status
DU OPT5 20 13 9 0 37335 0.1

√

DU OPT 20 13 9 0 86913 0.3
√

ST E13 2 1 2 0 79 0.0
√

ST E14 11 4 13 4 72356 0.1
√

ST E15 5 3 5 2 8711 0.0
√

ST E27 4 2 6 0 2449 0.0
√

ST E29 11 8 7 2 857067 0.9
√

ST E31 112 24 135 81 2058512124 10800.0 -
ST E32 35 19 18 17 912740727 1876.8

√

ST E35 32 7 39 15 4266383 9.6
√

ST E36 2 1 2 1 39216 0.0
√

ST E38 4 2 3 0 816 0.0
√

ST E40 4 3 8 4 34269 0.0
√

ST MIQP1 5 5 1 0 18 0.0
√

ST MIQP2 4 4 3 0 7013 0.0
√

ST MIQP3 2 2 1 0 778 0.0
√

ST MIQP4 6 3 4 0 169111 0.1
√

ST MIQP5 7 2 13 0 79462 0.1
√

ST TEST1 5 5 1 0 1 0.0
√

ST TEST2 6 6 2 0 46 0.0
√

ST TEST3 13 13 10 0 9521 0.0
√

ST TEST4 6 6 5 0 8797 0.0
√

ST TEST5 10 10 11 0 67 0.0
√

ST TEST6 10 10 5 0 8260 0.0
√

ST TEST8 24 24 20 0 461832 0.7
√

TESTGR1 10 10 5 0 847 0.0
√

TESTGR3 20 20 20 0 6179 0.0
√

TESTPH4 3 3 10 0 180 0.0
√

TLN2 8 8 12 0 491 0.0
√

TLN4 24 24 24 0 60883 0.1
√

TLN5 35 35 30 0 339723 0.6
√

TLN6 48 48 36 0 2777354 6.6
√

NEJI 3 1 6 0 1641 0.0
√

TST NAG 8 4 7 2 1168917729 10800.0 x
TLOSS 48 48 53 0 246656909 10800.0 -
TLTR 48 48 54 0 106994 0.2

√

MEANVARX 35 14 44 8 159451 0.3
√

MINLPHIX 84 20 92 30 405663248 1722.2
√

MIP EX 5 3 7 0 9276 0.0
√

MGRID C1 5 5 1 0 147 0.0
√

MGRID C2 10 10 1 0 13995 0.0
√

CROP5 5 5 3 0 296 0.0
√

CROP20 20 20 3 0 18230 0.1
√

CROP50 50 50 3 0 9318 0.1
√

CROP100 100 100 3 0 348400 4.3
√

SPLITF1 12 9 9 3 12932 0.0
√

SPLITF2 24 18 15 6 21768 0.0
√

SPLITF3 24 18 15 6 207311 0.3
√

SPLITF4 24 18 15 6 40770 0.1
√

SPLITF5 24 18 15 6 270554 0.4
√

SPLITF6 24 18 15 6 16712 0.0
√

SPLITF7 36 27 21 9 69626671 140.8
√

SPLITF8 36 27 21 9 235824 0.4
√

SPLITF9 36 27 21 9 534083 1.0
√



TABLE VI: Individual MINLP benchmarks results (continued)

Benchmark Details MIDACO Performance

Name n ni m me Evaluation Time Status
ELF 54 24 38 6 3237178 9.2

√

SPECTRA2 69 30 72 9 ********** 10800.0 -
WINDFAC 14 3 13 13 50720451 56.4

√

CSCHED1 76 63 22 12 ********** 10800.0 -
ALAN 8 4 7 2 277922 0.2

√

PUMP 24 9 34 13 ********** 10800.0 -
RAVEM 112 54 186 25 1871886913 10800.0 -
ORTEZ 87 18 74 24 ********** 10800.0 -
EX1221 5 3 5 2 1995 0.0

√

EX1222 3 1 3 0 289 0.0
√

EX1223 11 4 13 4 516775 0.5
√

EX1223A 7 4 9 0 9140 0.0
√

EX1223B 7 4 9 0 1404 0.0
√

EX1224 11 8 7 2 857067 0.8
√

EX1225 8 6 10 2 27077 0.0
√

EX1226 5 3 5 1 30 0.0
√

EX1233 52 12 64 20 ********** 10800.0 -
EX1243 68 16 96 24 ********** 10800.0 -
EX1244 95 23 129 30 ********** 10800.0 -
EX1252 39 15 43 22 857436185 10800.0 -
EX1263 92 72 55 20 ********** 10800.0 -

EX1263A 24 24 35 0 458505 0.7
√

EX1264 88 68 55 20 ********** 10800.0 -
EX1264A 24 24 35 0 2000871 3.0

√

EX1265 130 100 74 30 1753426609 10800.0 -
EX1265A 35 35 44 0 1018211 2.0

√

DIOPHE 4 4 1 1 22828 0.0
√

EX1266A 48 48 53 0 253634424 10800.0 -
GBD 4 3 4 0 135 0.0

√

EX3 32 8 31 17 23435814 41.0
√

EX4 36 25 30 0 227553 0.5
√

FAC1 22 6 18 10 213838 0.3
√

FAC2 66 12 33 21 3132938 9.2
√

FAC3 66 12 33 21 2965361 8.8
√

GKOCIS 11 3 8 5 34114 0.0
√

KG 9 2 9 5 242292 0.2
√

SYNTHES1 6 3 6 0 3137 0.0
√

SYNTHES2 11 5 14 1 44888 0.0
√

SYNTHES3 17 8 23 2 224927 0.3
√

PARALLEL 205 25 115 81 129831348 1159.4
√

SYNHEAT 56 12 64 20 ********** 10800.0 -
SEP1 29 2 31 22 16484485 25.6

√

DAKOTA 4 2 2 0 494 0.0
√

BATCH 47 24 73 12 14533610 36.9
√

BATCHDES 19 9 19 6 216 0.0
√

ENIPLAC 141 24 189 87 1588589869 10800.0 x
PROB02 6 6 8 0 3571 0.0

√

PROB03 2 2 1 0 15 0.0
√

PROB10 2 1 2 0 447 0.0
√

NOUS1 50 2 43 41 284195041 10800.0 -
NOUS2 50 2 43 41 305474645 10800.0 -
TLS2 37 33 24 6 987927 2.1

√

TLS4 105 89 64 20 1874485649 10800.0 -
TLS5 161 136 90 30 1231187433 10800.0 -

TABLE VII: Individual MINLP benchmarks results (contin-
ued)

Benchmark Details MIDACO Performance

Name n ni m me Evaluation Time Status
OAER 9 3 7 3 28358 0.0

√

PROCSEL 10 3 7 4 526787 0.5
√

LICHOU 1 2 1 2 1 32774 0.0
√

LICHOU 2 4 2 4 0 2284 0.0
√

LICHOU 3 3 3 4 0 33 0.0
√

WU 1 32 32 0 0 178 0.0
√

WU 2 32 32 0 0 123 0.0
√

WU 3 64 64 0 0 162 0.0
√

WU 4 64 64 0 0 1 0.0
√

OPTPRLOC 30 25 30 0 11410 0.0
√

GASNET 90 10 69 48 ********** 10800.0 x
TP83 5 4 6 0 538 0.0

√

TP84 5 2 6 0 4869 0.0
√

TP85 5 3 38 0 23098 0.0
√

TP87 6 2 4 4 12447 0.0
√

TP93 6 1 2 0 88573 0.1
√

FEEDTRAY 97 7 91 83 1936657925 10800.0 x
FEEDTRAY2 87 36 283 6 2047046251 10800.0 x
HILBERT20 20 20 20 20 549764 2.0

√

HILBERT50 50 50 50 50 62412742 1084.9
√

HILBERT100 100 100 100 100 107896529 6872.4
√

SLOPPY 6 6 3 0 2 0.0
√

RASTRIGIN 2 1 0 0 434 0.0
√

EMSO 6 3 4 0 948 0.0
√

TP1 2 2 0 0 17933 0.0
√

TP1A 2 2 0 0 17933 0.0
√

TP1B 2 2 0 0 17933 0.0
√

TP9 2 2 1 1 1334 0.0
√

TP10 2 2 1 0 3904 0.0
√

DEB10 182 22 129 65 1164715084 10800.0 x
IRAP1 68 68 18 0 316613 1.7

√

IRAP2 38 38 20 0 1087 0.0
√

IRAP3 40 40 21 0 3091 0.0
√

IRAP4 45 45 16 0 274366 1.1
√

IRAP5 60 60 16 0 520004 2.5
√

IRAP6 34 34 18 0 4282 0.0
√
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