

Abstract—This contribution discusses a novel many-objective

optimization algorithmthat combines anant colony optimization

based decomposition approach with a massive parallelization

framework. A rigorous numerical analysis on the impact of the

two varying key factors of the here considered parallelization

approach is presented. Those factors are the number of

co-evaluated solution candidates within an individual ant

colony algorithm and the number of individual ant colony

algorithms itself.Aim of the presented method is to solve a

many-objective application corresponding to the interplanetary

space trajectory of the Cassini probe, launched by NASA in

1997. The provided numerical results indicate that

comprehensive mission analysis via a many-objective approach

is possible and that the presented approach is highly suitable for

massive parallelization.

Index Terms— Many-Objective Optimization, Ant Colony

Optimization, Space Flight Trajectory, Parallelization

I. INTRODUCTION

Numerical optimization is an essential requirement in

science and technology. This contribution discusses

optimization problems containing several objectives and

which can be mathematically defined as follows:

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓1 𝑥 , … , 𝑓𝑀 𝑥 𝑥 𝜖 ℝ𝑛 , 𝑛 𝜖 ℕ

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:

𝑔𝑖 𝑥 = 0, 𝑖 = 1, … , 𝑚𝑒 𝜖 ℕ

𝑔𝑖 𝑥 ≥ 0, 𝑖 = 𝑚𝑒 , … , 𝑚 𝜖 ℕ (1)

𝑎𝑛𝑑 𝑏𝑜𝑢𝑛𝑑 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠:

𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢 (𝑥𝑙 , 𝑥𝑢 𝜖 ℝ𝑛).

Without loss of generality, a constrained minimization

problem of M objectives is described in (1). Note that in case

of more than three objectives, the above multi-objective

problem is alternatively referred toas many-objective

problem. The investigation of many-objective optimization

Manuscript received July 23, 2015.This work was supported in part by

the RIKEN Advanced Institute for Computational science (Proposal number

hp140231).The co-author of this paper, Chit Hong Yam, is supported by the
JSPS international postdoctoral research fellowship. Martin Schlueter, Chit

Hong Yam, Takeshi Watanabe and Akira Oyama are with the Japanese

Aerospace Exploration Agency (JAXA), Institute of Space and Astronautical
Science (ISAS) 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa

252-5210, JAPAN (e-mail:

martin@flab.isas.jaxa.jp,chithongyam@gmail.com,watanabe@flab.isas.jax
a.jp, oyama@flab.isas.jaxa.jp).

problems is rapidly developing and those problems have been

recently studied for example in Aguirre et al. [1], Aguirre et

al. [2], Duro et al. [3], Luecken et al. [4] or Yuang et al. [5].

Recently a new algorithm for multi- and many-objective

optimization based on massively parallelized Ant Colony

Optimization (ACO) was proposed in Schlueter et al. [6].

This algorithm is based on a continuous ACO, as described in

detail in Schlueter et al. [7], rather than a combinatorial one,

which has been showing particular promising performance

on interplanetary space trajectory design (see [8]).

Keeping in mind that parallelization is a growing trend in

computer architecture design, this algorithm is particular

suitable to exploit (massive) parallelization. The

parallelization of the algorithm happens in two regards:

Firstly, several instances of ACO are executed in parallel and

secondly, the function evaluation of each ACO instance is

performed in parallel (also denoted as co-evaluation).

Particular the parallel execution of function evaluation is a

crucial criteria for the applicability of the algorithm to

cpu-time intensive real-world applications.

The design of interplanetary space trajectories focuses

traditionally on a 'primary' single objective, such as the ΔV

(for chemical propulsion missions) or maximization of final

spacecraft mass (for low-thrust missions [9]). Other

objectives, such as time of flight and launch date, are

normally treated as 'secondary' objectives and implicitly

incorporated in the mission analysis in form of constraints.

This means the mission designer needs to set some

reasonable lower and upper bounds on those secondary

objectives. As a consequence of such procedure, the solution

space is restricted and might exclude potential interest

solutions.

The approach followed in this contribution does not rely on

constraints but on integrative mission design, treating the

secondary objectives in a multi/many-objective way. The

goal of this research is to avoid the potential pitfall of

solution space shrinking and equip the mission designer with

a more flexible tool. Note that multi-objective approaches

towards the here considered Cassini mission (without deep

space maneuvers) has also been studied Vasile and

Zuiani[10] and Zuiani and Vasile [11].

While in Schlueter et al. [6] the validity of the proposed

algorithm for space applications was investigated, this

contribution presents a rigorous analysis of the impact of the

two levels of parallelization in regard to the performance of

the algorithm.

Parallelization Impact on Many-Objective

Optimization for Space Trajectory Design

Martin Schlueter, Chit Hong Yam, Takeshi Watanabe,Akira Oyama

mailto:martin@flab.isas.jaxa.jp
mailto:chithongyam@gmail.com
mailto:watanabe@flab.isas.jaxa.jp
mailto:watanabe@flab.isas.jaxa.jp
mailto:watanabe@flab.isas.jaxa.jp
mailto:oyama@flab.isas.jaxa.jp

This paper is structured as follows: Section II describes the

algorithmic approach to solve the many objective problem.

Section III gives details on the considered space mission

model. In Section IV achieved numerical results are

presented and compared with another state-of-the-art

many-objective algorithm. The paper finishes with some

conclusions.

II. OPTIMIZATION APPROACH

This Section describes the algorithm to solve the

multi-objective optimization problem (1) described in the

introduction. The here presented algorithm was recently

introduced in Schlueter et al. [6]. It is based on a combination

of a decomposition of the original multi-objective problem

into a series of single-objective problem and a (massive)

parallelization framework of individual ACO instances, each

handling one of those single-objective problems. A detailed

description of the ACO algorithm considered here can be

found in Schlueter et al. [7].In regard to the constraints stated

in problem in (1), for the sake of brevity, the set of all x that

fulfill the feasibility constraints in (1) should be denoted as ℱ.

A. Decomposition based on Utopia-Nadir Balance

The decomposition approach considered here is based on

so called utopia and nadir information. The utopiaUi of an

individual objective fi(x) represents the global minimum of

the respective objective and is formally defined as follows:

𝑈𝑖 = min{ 𝑓𝑖 𝑥 ∀ 𝑥 𝜖 ℱ}. (2)

In contrast to the utopia Ui, the nadir Ni represents the

worst objective function value for the respective fi(x)among

all solutions x which correspond to an utopia Ukof any other

objective fk(x). The nadir Niis formally defined as follows:

𝑁𝑖 = max 𝑓𝑖 𝑥 ∀ 𝑥 ∶ ∃ 𝑘 ≠ 𝑈𝑘 . (3)

Given the utopia and nadir information, a scalar function is

introduced in the following which acts as an indicator for the

balance of a solutionx.Therefore the here presented

decomposition approach is coined Utopia-Nadir-Balance

decomposition. A graphical illustration of an equally

weighted Utopia-Nadir-Balance for a two-dimensional

objective function can be found in Fig. 1.

Now the Utopia-Nadir-Balancedecomposition is

described in detail. Let Sbe the integer value which denotes

the amount of single-objective sub problems in which the

original multi-objective problem is decomposed into. Let

further wbe a matrix of size O × S containing weights in [0,1]

for each of the S sub problems.Given the utopia Uiand nadir

Niinformation is globally available among all sub problems,

then a (weighted) distance di
j
(x) for a solution x in each

objective fi(x)according to a sub problem j is defined as

follows:

𝑑𝑖
𝑗 𝑥 = 𝑤𝑖

𝑗 𝑓𝑖 𝑥 − 𝑈𝑖

𝑁𝑖 − 𝑈𝑖

. (4)

Let the average distance Dj(x) for a solution x according to

a sub problem j should be defined as follows:

𝐷𝑗 𝑥 =
 𝑑𝑖

𝑗
(𝑥)𝑀

𝑖=1

𝑀
. (5)

Given the distance di
j
 and the average distance Dj(x), now

the balance Bj(x) of a solution x according to a sub problem j

is defined as follows:

𝐵𝑗 𝑥 = 𝑑𝑖
𝑗 𝑥 − 𝐷𝑗 𝑥

𝑀

𝑖=1

, (6)

where|۰| denotes some norm function, e.g. the absolute

value. From equation (4), (5) and (6) it can be seen, that

balance Bj(x) expresses a measurement for the average

distance of a solution x in regard to the utopia's and nadir's of

each objective.Note that the value of Bj(x) is bounded to the

interval [0,1].

Fig. 1.Illustration of the balance concept.

Using the balance B , utopia U , nadir N and weights w, a

single objective function T (denoted as target function)is

defined for each j-thsubproblem:

𝑇𝑗 𝑥 = 𝑤𝑖
𝑗 𝑓𝑖 𝑥 − 𝑈𝑖

𝑁𝑖 − 𝑈𝑖

+ 𝐵𝑗 𝑥

𝑀

𝑖=1

 (7)

The set of single objective problems given by

T1,...,TMtherefore decomposes theoriginal multi-objective

problem.

Note that in case of the very first initial execution ofthe

ACO instances (illustrated in Fig. 3), no information about

the current utopia U and nadir N is available.As a heuristic

solution to this dilemma, the target function T is replaced for

the veryfirst execution by a simple weighted sum over the

objectives. For each j-thsubproblemthis function is then

given as follows:

𝑇 𝑗 𝑥 = 𝑤𝑖
𝑗
𝑓𝑖 𝑥 . (8)

𝑀

𝑖=1

Note that in Schlueter et al. [8] was in particular

investigated, how the algorithmic performance depends on

the target functions T(x) and its initial substitute given in

equation (8).

B. Parallelization Framework

This subsection describes the parallelization framework,

called ACOMOD, which executes and operates aset of S

individual ACO algorithms in parallel. The ACOMOD

framework classifies as a Master-Slave model, where each

Slave represents an individual ACO algorithm, executed in

an individual thread. Each of the S individual ACO

algorithms is assigned to a different single objective problem,

resulting from the decomposition of the original

multi-objective problem described in Subsection II-A. While

theoretically each ACO instance could operate in complete

autonomy, the overall performance should be improved by

exchanging utopia, nadir and best known solution

information between individual ACO instances from time to

time. At the very end, each individual ACO instance reports

its set of non-dominated solutions found to the ACOMOD

master framework, where this informationis processed to

create the overall approximation of the pareto front. Fig. 3

illustrates the ACOMOD framework, executing several

instance of ACO's with exchanging solutions and Fig. 2

illustrates the algorithm in a pseudo-code description.

Fig.2.Illustration of the ACOMOD pseudo-code

In order to be able to treat even very cpu-time intensive

applications, the ACOMOD framework offers a second

parallelization layer concerning the execution of objective

and constraint function in each individual ACO instance. In

regard to Fig. 3 this means that the individuals of each ACO

instance can be co-evaluated in parallel.

Fig.3.Illustration of the ACOMOD parallelization

framework.

III. MANY-OBJECTIVE SPACE TRAJECTORY MODEL

The here considered space mission is a simplified model of

the Cassini mission to Saturn, launched by NASA in 1997

(see Fig. 4.)

Fig.4.Illustration of the Cassini trajectory launched 1997.

The model is made available as interplanetary trajectory

design problem in the European Space Agency (ESA) Global

Trajectory Optimization Problems (GTOP) database[12]:

The 'Cassini1' problem. In its original formulation by ESA,

the model consists of 6 variables (see Table I with a single

objective of the total ΔV including the launch V∞at Earth,

powered-flyby ΔVat each swing-by, and the arrival V∞at

Saturn. The trajectory is a two-body, patched-conic gravity

assist model, as opposed to the more complicated

MGA-DSM (with deep space maneuver) model.

TABLE I: VARIABLES AND BOUNDS

Var Name Lower & Upper Bound Unit

x(1) Launch Date -1000 ~ 0 MJD2000

x(2) TOF 1 30 ~ 400 Days

x(3) TOF 2 100 ~ 470 Days

x(4) TOF 3 30 ~ 400 Days

x(5) TOF 4 400 ~ 2000 Days

x(6) TOF 5 1000 ~ 6000 Days

In regard to the original single-objective formulation by

ESA, here the model is extended to four objectives.

This is namely the ΔV, the launch V∞, time of flight and the

launch date (see Table II). While the ΔVor time of flight are

commons objectives, the minimization of the departure time

was considered here (namely F3 in Table II), as this objective

may occur in a mission projects where the target planet

should be reached as soon as possible. For such a mission

project a trajectory solution with exceptional short flight time

but with a launch date far in the future would be

inappropriate.

TABLE II: THE FOUR OBJECTIVES

Objectives Names Units

F1 ΔV (excluding Launch 𝛥∞) Km/Sec

F2 Time of Flight Days

F3 Launch Date MJD2000

F4 Launch𝛥∞ Km/Sec

IV. COMPUTATIONAL RESULTS

This section discusses numerical results achieved by the

proposed optimization algorithm (see Section II) on the

considered space mission benchmark (see Section III). While

in Schlueter et al. [8] the numerical evaluation of validity of

the Utopia-Nadir-Balance (see Section II-A) was

investigated, here a rigorous investigating of the impact of

parallelization is presented.

As described in Section II-B, the ACOMOD algorithm offers

two options for parallelization, this is the number of

individual ACO instances (see Fig. 3) and the number of

co-evaluated individuals in each ACO. In order to investigate

how the performance of ACOMOD depends on these two

parallelization factors, several test runs with varying

combinations of first level parallelization (thus the number of

ACO instances) and second level parallelization (thus the

number of co-evaluated individuals) are performed.

Two basic setups regarding the number of ACO instances

within ACOMOD are considered, this is firstly 10 ACO

instances and secondly 100 ACO instances. Given those two

basic setups, the number of co-evaluated individuals is now

varied from 1 over 10 and 100 up to 1,000.Given a fixed total

function evaluation budget of 10,000,000 those settings

imply the number of maximal generations per each ACO in

each setup. For example, in case of ACOMOD with 10 ACO

instances and a co-evaluation factor of 1 (which means no

parallel evaluation), each ACO instance can perform

1,000,000 generations (and thus many sequential algorithmic

steps). In case of ACOMOD with 100 ACO instances and a

co-evaluation factor of 1,000, each ACO instance can

perform only 100 generations (and thus very few sequential

algorithmic steps).

TABLE III: AVERAGE HV RESULTS WITH 10 ACO INSTANCES

ACO Generations Co-Evaluation ∅Hyper Volume

1,000,000 1 0.84205

100,000 10 0.85522

10,000 100 0.89968

1000 1,000 0.92951

TABLE IV: AVERAGE HV RESULTS WITH 100 ACO INSTANCES

ACO Generations Co-Evaluation ∅Hyper Volume

100,000 1 0.90196

10,000 10 0.90905

1,000 100 0.94921

100 1,000 0.94979

Table III and Table IV display the average hyper volume

(HV) results obtained for each individual setup executed with

10 test runs. It can be seen that the highest (where higher is

better) average HV result of 0.94979 is achieved for the

maximal parallelization with 100 ACO instances and a

co-evaluation factor of 1,000. The lowest average HV result

of 0.84205 was achieved with the lowest level of

parallelization, which were 10 ACO instances with a

co-evaluation factor of 1.

It is interesting to see from Table III and Table IV that the

impact of the two parallelization factors is non-trivial.For

example the average hyper volume result for the combination

of 10 ACO instances with a co-evaluation factor of 1,000

yields better result than those combinations with 100 ACO

instances with a co-evaluation factor of 1 or 10.In regard to

the original motivation of this research, obtaining a highly

parallelizable many-objective optimization algorithm, it is

important to note that the overall best result from Table III

and IV correspond to the highest parallelization of level one

(number of ACO instances) and level two (co-evaluation

factor).Note that the last setup with 100 ACO instances and a

co-evaluation factor of 1,000 required the amount of 100,000

parallel threads, which is categorized as massive

parallelization. All calculations in Table III and IV have been

conducted on the K-Supercomputer.

Fig. 5 and Fig 6.illustrate the set of non-dominated

solutions obtained by the best out of 10 individual test runs

from the first setup in Table III (10 ACO instances with a

co-evaluation factor of 1) and last setup of Table IV (100

ACO instances with a co-evaluation factor of 1,000) in regard

to the first objective (ΔV) and second objective (time of

flight). The set of non-dominated solution illustrated in Fig. 5

correspond to a hyper volume value of 0.87954. The set of

non-dominated solution illustrated in Fig. 6 correspond to a

hyper volume value of 0.95389.

Fig.5.Non-dominated solutions from best run of the first

setup (co-evaluation factor 1) of Table III.

Fig.6.Non-dominated solutions from best run of the last setup

(co-evaluation factor 1,000) in Table IV.

The illustration of the best individual run of the first setup in

Table III was chosen, as this setup represents the lowest level

of parallelization. The illustration of the best individual run

of the last setup in Table III was chosen, as this setup

represents the highest level of parallelization. Besides the

significant difference in the value of the hyper volume

between those two runs (HV=0.87954vs.HV= 0.95389), Fig.

5 and Fig. 6 illustrate well the different solution space

coverage capacities of both setups, whereas a higher level of

parallelization is clearly in favor here.

V. CONCLUSIONS

A new algorithm (called ACOMOD) for multi- and

many-objective optimization was discussed and numerically

evaluated on a space mission benchmark provided by the

European Space Agency. The numerical analysis revealed

that the proposed algorithm does highly benefit from

(massive) parallelization and is therefore suitable for high

performance computing facilities like the K-Supercomputer.

The analysis further revealed that the impact of the two

varying parallelization factors is non-trivial and needs further

investigation. An important implication of the (massive)

parallelization capability of the algorithm and in particular

it’s second parallelization level (denoted as “co-evaluation”)

is itsapplicability to even very cpu-time expensive real-world

application.

APPENDIX

Here the individual hyper volume (HV) results of each

individual numerical test run are displayed. The here

displayed results correspond to the average values reported in

Table III and Table IV in Section IV. Table V shows the HV

results of the individual runs corresponding to 10 ACO

instances and a co-evaluation factor of 1 and 10. Table VI

shows the HV results of the individual runs corresponding to

10 ACO instances and a co-evaluation factor of 100 and

1,000. Table VII shows the HV results of the individual runs

corresponding to 100 ACO instances and a co-evaluation

factor of 1 and 10. Table VIII shows the HV results of the

individual runs corresponding to 100 ACO instances and a

co-evaluation factor of 100 and 1,000.

TABLE V: Individual HV results of

numerical test runs with 10 ACO instances

Numerical runs with

co-evaluation factor 1

Numerical runs with

co-evaluation factor 10

Run 1 0.6957159 Run 1 0.7735096

Run 2 0.8214306 Run 2 0.8725294

Run 3 0.8282290 Run 3 0.8458235

Run 4 0.8504792 Run 4 0.8479869

Run 5 0.8729078 Run 5 0.8777737

Run 6 0.8739988 Run 6 0.8436767

Run 7 0.8735564 Run 7 0.8751145

Run 8 0.8685478 Run 8 0.8708845

Run 9 0.8795437 Run 9 0.8664833

Run 10 0.8561217 Run 10 0.8784168

TABLE VI: Individual HV results of

numerical test runs with 10 ACO instances

Numerical runs with

co-evaluation factor 100

Numerical runs with

co-evaluation factor 1,000

Run 1 0.8944041 Run 1 0.9252429

Run 2 0.8855513 Run 2 0.9381606

Run 3 0.9068527 Run 3 0.9301337

Run 4 0.9143026 Run 4 0.9372895

Run 5 0.9050605 Run 5 0.9131399

Run 6 0.9110774 Run 6 0.9491826

Run 7 0.8992004 Run 7 0.9102161

Run 8 0.8992033 Run 8 0.9427224

Run 9 0.9011270 Run 9 0.9196478

Run 10 0.8800702 Run 10 0.9294061

TABLE VII: Individual HV results of

numerical test runs with 100 ACO instances

Numerical runs with

co-evaluation factor 1

Numerical runs with

co-evaluation factor 10

Run 1 0.8678095 Run 1 0.8505769

Run 2 0.8879897 Run 2 0.8964099

Run 3 0.8992584 Run 3 0.9023381

Run 4 0.9060852 Run 4 0.9163643

Run 5 0.9048196 Run 5 0.9194974

Run 6 0.9116159 Run 6 0.9218590

Run 7 0.9129544 Run 7 0.9194105

Run 8 0.9114331 Run 8 0.9227522

Run 9 0.9095349 Run 9 0.9254553

Run 10 0.9080850 Run 10 0.9158429

TABLE VIII: Individual HV results of

numerical test runs with 100 ACO instances

Numerical runs with

co-evaluation factor 100

Numerical runs with

co-evaluation factor 1,000

Run 1 0.9514614 Run 1 0.9536307

Run 2 0.9536226 Run 2 0.9538555

Run 3 0.9343257 Run 3 0.9498546

Run 4 0.9497940 Run 4 0.9538692

Run 5 0.9529386 Run 5 0.9342381

Run 6 0.9522419 Run 6 0.9525265

Run 7 0.9415437 Run 7 0.9498546

Run 8 0.9513782 Run 8 0.9542652

Run 9 0.9509938 Run 9 0.9419219

Run 10 0.9538493 Run 10 0.9538889

ACKNOWLEDGMENT

The numerical results have been obtained by using the K

computerat the RIKEN Advanced Institute for

Computational science(Proposal number hp140231).The

co-author of this paper, Chit Hong Yam, is supported by the

JSPS international postdoctoral research fellowship.

REFERENCES

[1] H. Aguirre, Y. Yuki, A. Oyama, T. Kiyoshi: Extending AeSeH from

Many-objective to Multi-objective Optimization. Lect. Notes Comput.

Sc.Vol 8886, pp 239-250, 2014.
[2] H. Aguirre, A. Liefooghe, S. Verel, K. Tanaka: An Analysis on

Selection for High-Resolution Approximations in Many-Objective

Optimization. Lect. Notes Comput. Sc. Vol 8672, pp 487-497, 2014.
[3] J.A. Duro, D.K. Saxena, K. Deb, Q. Zhang: Machine learning based

decision support for many-objective optimization problems.

NeurocomputingVol 146, pp. 30-47, 2014.
[4] C. Luecken, B. Baran, C. Brizuela: A survey on multi-objective

evolutionary algorithms for many-objective problems. Comput. Optim.

Appl. Vol. 58(3), pp. 707-756, 2014.
[5] Y. Yuan, H. Xu, B. Wang: An improved NSGA-III procedure for

evolutionary many-objective optimization. Proc. 2014 Conf. Gen. Evo.

Comput. (GECCO), pp. 661-668, 2014.
[6] M. Schlueter, C.H. Yam, T. Watanabe, A. Oyama:Many-Objective

Optimization of Interplanetary Space Mission Trajectories.

Proceedings of the IEEE-CEC2015 conference, Sendai, Japan

(accepted, to be published).

[7] M. Schlueter, J.A. Egea, J.R. Banga: Extended Ant Colony
Optimization for non-convex Mixed Integer Nonlinear Programming.

Comput. Oper. Res., 36(7), pp. 2217-2229, 2009.

[8] M. Schlueter:MIDACO Software Performance on Interplanetary
Trajectory Benchmarks. Advances in Space Research (Elsevier), Vol

54, Issue 4, Pages 744 - 754 (2014).

[9] J. A. Sims, P. A. Finlayson, E. A. Rinderle, M. A. Vavrina, T. D.
Kowalkowski: Implementation of a Low-Thrust Trajectory

Optimization Algorithm for Preliminary Design, AIAA/AAS

Astrodynamics Specialist Conference, Aug. 2006, AIAA 2006-6746.
[10] M. Vasile, F. Zuiani: Multi-agent collaborative search: an agent-based

memetic multi-objective optimization algorithm applied to space

trajectory design. Proceedings of the Institution of Mechanical
Engineers, Part G: Journal of Aerospace EngineeringVol 225, No. 11,

pp. 1211-1227, 2011.

[11] F. Zuiani, M. Vasile: Multi agent collaborative search based on

Tchebycheff decomposition. Computational Optimization and

ApplicationsVol 56, No. 1, pp. 189-208, 2013.

[12] European Space Agency (ESA) and Advanced Concepts Team (ACT).
Gtop database - global optimisationtra-jectory problems and solutions,

Software available at

http://www.esa.int/gsp/ACT/inf/projects/gtop/gtop.html, 2015.

	OLE_LINK1
	OLE_LINK2
	OLE_LINK5
	PointTmp

