
  

 

Abstract—This contribution discusses a novel many-objective 

optimization algorithmthat combines anant colony optimization 

based decomposition approach with a massive parallelization 

framework. A rigorous numerical analysis on the impact of the 

two varying key factors of the here considered parallelization 

approach is presented. Those factors are the number of 

co-evaluated solution candidates within an individual ant 

colony algorithm and the number of individual ant colony 

algorithms itself.Aim of the presented method is to solve a 

many-objective application corresponding to the interplanetary 

space trajectory of the Cassini probe, launched by NASA in 

1997. The provided numerical results indicate that 

comprehensive mission analysis via a many-objective approach 

is possible and that the presented approach is highly suitable for 

massive parallelization. 

 
Index Terms— Many-Objective Optimization, Ant Colony 

Optimization, Space Flight Trajectory, Parallelization 

 

I. INTRODUCTION 

Numerical optimization is an essential requirement in 

science and technology. This contribution discusses 

optimization problems containing several objectives and 

which can be mathematically defined as follows: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒     𝑓1 𝑥 , … , 𝑓𝑀 𝑥  𝑥 𝜖 ℝ𝑛 , 𝑛 𝜖 ℕ  

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

 

𝑔𝑖 𝑥 = 0, 𝑖 = 1, … , 𝑚𝑒  𝜖 ℕ 

𝑔𝑖 𝑥  ≥ 0, 𝑖 = 𝑚𝑒 , … , 𝑚 𝜖 ℕ                    (1) 

 

𝑎𝑛𝑑 𝑏𝑜𝑢𝑛𝑑 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠: 

 

𝑥𝑙  ≤ 𝑥 ≤  𝑥𝑢   (𝑥𝑙 , 𝑥𝑢  𝜖 ℝ𝑛 ). 

 

Without loss of generality, a constrained minimization 

problem of M objectives is described in (1). Note that in case 

of more than three objectives, the above multi-objective 

problem is alternatively referred toas many-objective 

problem. The investigation of many-objective optimization 
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problems is rapidly developing and those problems have been 

recently studied for example in Aguirre et al. [1], Aguirre et 

al. [2], Duro et al. [3], Luecken et al. [4] or Yuang et al. [5].  

 

Recently a new algorithm for multi- and many-objective 

optimization based on massively parallelized Ant Colony 

Optimization (ACO) was proposed in Schlueter et al. [6]. 

This algorithm is based on a continuous ACO, as described in 

detail in Schlueter et al. [7], rather than a combinatorial one, 

which has been showing particular promising performance 

on interplanetary space trajectory design (see [8]). 

Keeping in mind that parallelization is a growing trend in 

computer architecture design, this algorithm is particular 

suitable to exploit (massive) parallelization. The 

parallelization of the algorithm happens in two regards: 

Firstly, several instances of ACO are executed in parallel and 

secondly, the function evaluation of each ACO instance is 

performed in parallel (also denoted as co-evaluation). 

Particular the parallel execution of function evaluation is a 

crucial criteria for the applicability of the algorithm to 

cpu-time intensive real-world applications. 

 

The design of interplanetary space trajectories focuses 

traditionally on a 'primary' single objective, such as the ΔV 

(for chemical propulsion missions) or maximization of final 

spacecraft mass (for low-thrust missions [9]). Other 

objectives, such as time of flight and launch date, are 

normally treated as 'secondary' objectives and implicitly 

incorporated in the mission analysis in form of constraints. 

This means the mission designer needs to set some 

reasonable lower and upper bounds on those secondary 

objectives. As a consequence of such procedure, the solution 

space is restricted and might exclude potential interest 

solutions. 

The approach followed in this contribution does not rely on 

constraints but on integrative mission design, treating the 

secondary objectives in a multi/many-objective way. The 

goal of this research is to avoid the potential pitfall of 

solution space shrinking and equip the mission designer with 

a more flexible tool. Note that multi-objective approaches 

towards the here considered Cassini mission (without deep 

space maneuvers) has also been studied Vasile and 

Zuiani[10] and Zuiani and Vasile [11]. 

 

While in Schlueter et al. [6] the validity of the proposed 

algorithm for space applications was investigated, this 

contribution presents a rigorous analysis of the impact of the 

two levels of parallelization in regard to the performance of 

the algorithm. 
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This paper is structured as follows: Section II describes the 

algorithmic approach to solve the many objective problem. 

Section III gives details on the considered space mission 

model. In Section IV achieved numerical results are 

presented and compared with another state-of-the-art 

many-objective algorithm. The paper finishes with some 

conclusions. 

II. OPTIMIZATION APPROACH 

 

This Section describes the algorithm to solve the 

multi-objective optimization problem (1) described in the 

introduction. The here presented algorithm was recently 

introduced in Schlueter et al. [6]. It is based on a combination 

of a decomposition of the original multi-objective problem 

into a series of single-objective problem and a (massive) 

parallelization framework of individual ACO instances, each 

handling one of those single-objective problems. A detailed 

description of the ACO algorithm considered here can be 

found in Schlueter et al. [7].In regard to the constraints stated 

in problem in (1), for the sake of brevity, the set of all x that 

fulfill the feasibility constraints in (1) should be denoted as ℱ. 

 

A. Decomposition based on Utopia-Nadir Balance 

 

The decomposition approach considered here is based on 

so called utopia and nadir information. The utopiaUi of an 

individual objective fi(x) represents the global minimum of 

the respective objective and is formally defined as follows: 

 

𝑈𝑖 = min{ 𝑓𝑖 𝑥  ∀ 𝑥 𝜖 ℱ}.                  (2)          

 

In contrast to the utopia Ui, the nadir Ni represents the 

worst objective function value for the respective fi(x)among 

all solutions x which correspond to an utopia Ukof any other 

objective fk(x). The nadir Niis formally defined as follows: 

 

𝑁𝑖 = max 𝑓𝑖 𝑥  ∀ 𝑥 ∶  ∃ 𝑘 ≠  𝑈𝑘   .          (3) 

 

Given the utopia and nadir information, a scalar function is 

introduced in the following which acts as an indicator for the 

balance of a solutionx.Therefore the here presented 

decomposition approach is coined Utopia-Nadir-Balance 

decomposition. A graphical illustration of an equally 

weighted Utopia-Nadir-Balance for a two-dimensional 

objective function can be found in Fig. 1. 

 

Now the Utopia-Nadir-Balancedecomposition is 

described in detail. Let Sbe the integer value which denotes 

the amount of single-objective sub problems in which the 

original multi-objective problem is decomposed into. Let 

further wbe a matrix of size O × S containing weights in [0,1] 

for each of the S sub problems.Given the utopia Uiand nadir 

Niinformation is globally available among all sub problems, 

then a (weighted) distance di
j
(x) for a solution x in each 

objective fi(x)according to a sub problem j is defined as 

follows: 

 

𝑑𝑖
𝑗  𝑥 =  𝑤𝑖

𝑗 𝑓𝑖 𝑥 −  𝑈𝑖

𝑁𝑖 −  𝑈𝑖

.                         (4) 

 

 

 

Let the average distance Dj(x) for a solution x according to 

a sub problem j should be defined as follows: 

 

𝐷𝑗  𝑥 =  
 𝑑𝑖

𝑗
(𝑥)𝑀

𝑖=1

𝑀
.                        (5) 

 

Given the distance di
j
 and the average distance Dj(x), now 

the balance Bj(x) of a solution x according to a sub problem j 

is defined as follows: 

 

𝐵𝑗  𝑥 =    𝑑𝑖
𝑗  𝑥 −  𝐷𝑗  𝑥  

𝑀

𝑖=1

,                 (6) 

 

where|۰| denotes some norm function, e.g. the absolute 

value. From equation (4), (5) and (6) it can be seen, that 

balance Bj(x) expresses a measurement for the average 

distance of a solution x in regard to the utopia's and nadir's of 

each objective.Note that the value of Bj(x) is bounded to the 

interval [0,1]. 

 

 
Fig. 1.Illustration of the balance concept. 

 

Using the balance B , utopia U , nadir N and weights w, a 

single objective function T (denoted as target function)is 

defined for each j-thsubproblem: 

 

𝑇𝑗  𝑥 =   𝑤𝑖
𝑗 𝑓𝑖 𝑥 −  𝑈𝑖

𝑁𝑖 −  𝑈𝑖

+ 𝐵𝑗  𝑥 

𝑀

𝑖=1

             (7) 

 

The set of single objective problems given by 

T1,...,TMtherefore decomposes theoriginal multi-objective 

problem.  

 

Note that in case of the very first initial execution ofthe 

ACO instances (illustrated in Fig. 3), no information about 

the current utopia U and nadir N is available.As a heuristic 

solution to this dilemma, the target function T is replaced for 

the veryfirst execution by a simple weighted sum over the 

objectives. For each j-thsubproblemthis function is then 

given as follows: 

 

𝑇 𝑗  𝑥 =   𝑤𝑖
𝑗
𝑓𝑖 𝑥 .                     (8)

𝑀

𝑖=1

 

 



  

 

Note that in Schlueter et al. [8] was in particular 

investigated, how the algorithmic performance depends on 

the target functions T(x) and its initial substitute given in 

equation (8). 

 

B. Parallelization Framework 

 

This subsection describes the parallelization framework, 

called ACOMOD, which executes and operates aset of S 

individual ACO algorithms in parallel. The ACOMOD 

framework classifies as a Master-Slave model, where each 

Slave represents an individual ACO algorithm, executed in 

an individual thread. Each of the S individual ACO 

algorithms is assigned to a different single objective problem, 

resulting from the decomposition of the original 

multi-objective problem described in Subsection II-A. While 

theoretically each ACO instance could operate in complete 

autonomy, the overall performance should be improved by 

exchanging utopia, nadir and best known solution 

information between individual ACO instances from time to 

time. At the very end, each individual ACO instance reports 

its set of non-dominated solutions found to the ACOMOD 

master framework, where this informationis processed to 

create the overall approximation of the pareto front. Fig. 3 

illustrates the ACOMOD framework, executing several 

instance of ACO's with exchanging solutions and Fig. 2 

illustrates the algorithm in a pseudo-code description. 

 

 
Fig.2.Illustration of the ACOMOD pseudo-code 

 

In order to be able to treat even very cpu-time intensive 

applications, the ACOMOD framework offers a second 

parallelization layer concerning the execution of objective 

and constraint function in each individual ACO instance. In 

regard to Fig. 3 this means that the individuals of each ACO 

instance can be co-evaluated in parallel. 

 

 

 

 
 

Fig.3.Illustration of the ACOMOD parallelization 

framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

III. MANY-OBJECTIVE SPACE TRAJECTORY MODEL 

 

The here considered space mission is a simplified model of 

the Cassini mission to Saturn, launched by NASA in 1997 

(see Fig. 4.) 

 

 
Fig.4.Illustration of the Cassini trajectory launched 1997. 

 

The model is made available as interplanetary trajectory 

design problem in the European Space Agency (ESA) Global 

Trajectory Optimization Problems (GTOP) database[12]: 

The 'Cassini1' problem. In its original formulation by ESA, 

the model consists of 6 variables (see Table I with a single 

objective of the total ΔV including the launch V∞at Earth, 

powered-flyby ΔVat each swing-by, and the arrival V∞at 

Saturn. The trajectory is a two-body, patched-conic gravity 

assist model, as opposed to the more complicated 

MGA-DSM (with deep space maneuver) model. 

 
TABLE I: VARIABLES AND BOUNDS  

Var Name Lower & Upper Bound Unit 

x(1) Launch Date -1000 ~ 0 MJD2000 

x(2) TOF 1 30 ~ 400 Days 

x(3) TOF 2 100 ~ 470 Days 

x(4) TOF 3 30 ~ 400 Days 

x(5) TOF 4 400 ~ 2000 Days 

x(6) TOF 5 1000 ~ 6000 Days 

 

In regard to the original single-objective formulation by 

ESA, here the model is extended to four objectives. 

This is namely the ΔV, the launch V∞, time of flight and the 

launch date (see Table II). While the ΔVor time of flight are 

commons objectives, the minimization of the departure time 

was considered here (namely F3 in Table II), as this objective 

may occur in a mission projects where the target planet 

should be reached as soon as possible. For such a mission 

project a trajectory solution with exceptional short flight time 

but with a launch date far in the future would be 

inappropriate. 

 
TABLE II: THE FOUR OBJECTIVES  

Objectives Names Units 

F1 ΔV (excluding Launch 𝛥∞) Km/Sec 

F2 Time of Flight Days 

F3 Launch Date MJD2000 

F4 Launch𝛥∞  Km/Sec 

 

IV. COMPUTATIONAL RESULTS 

 

This section discusses numerical results achieved by the 

proposed optimization algorithm (see Section II) on the 

considered space mission benchmark (see Section III). While 

in Schlueter et al. [8] the numerical evaluation of validity of 

the Utopia-Nadir-Balance (see Section II-A) was 

investigated, here a rigorous investigating of the impact of 

parallelization is presented. 

 

As described in Section II-B, the ACOMOD algorithm offers 

two options for parallelization, this is the number of 

individual ACO instances (see Fig. 3) and the number of 

co-evaluated individuals in each ACO. In order to investigate 

how the performance of ACOMOD depends on these two 

parallelization factors, several test runs with varying 

combinations of first level parallelization (thus the number of 

ACO instances) and second level parallelization (thus the 

number of co-evaluated individuals) are performed. 

 

Two basic setups regarding the number of ACO instances 

within ACOMOD are considered, this is firstly 10 ACO 

instances and secondly 100 ACO instances. Given those two 

basic setups, the number of co-evaluated individuals is now 

varied from 1 over 10 and 100 up to 1,000.Given a fixed total 

function evaluation budget of 10,000,000 those settings 

imply the number of maximal generations per each ACO in 

each setup. For example, in case of ACOMOD with 10 ACO 

instances and a co-evaluation factor of 1 (which means no 

parallel evaluation), each ACO instance can perform 

1,000,000 generations (and thus many sequential algorithmic 

steps). In case of ACOMOD with 100 ACO instances and a 

co-evaluation factor of 1,000, each ACO instance can 

perform only 100 generations (and thus very few sequential 

algorithmic steps). 

 
TABLE III: AVERAGE HV RESULTS WITH 10 ACO INSTANCES 

ACO Generations Co-Evaluation ∅Hyper Volume 

1,000,000 1 0.84205 

100,000 10 0.85522 

10,000 100 0.89968 

1000 1,000 0.92951 

 

 
TABLE IV: AVERAGE HV RESULTS WITH 100 ACO INSTANCES 

ACO Generations Co-Evaluation ∅Hyper Volume 

100,000 1 0.90196 

10,000 10 0.90905 

1,000 100 0.94921 

100 1,000 0.94979 

 

 

Table III and Table IV display the average hyper volume 

(HV) results obtained for each individual setup executed with 



  

10 test runs. It can be seen that the highest (where higher is 

better) average HV result of 0.94979 is achieved for the 

maximal parallelization with 100 ACO instances and a 

co-evaluation factor of 1,000. The lowest average HV result 

of 0.84205 was achieved with the lowest level of 

parallelization, which were 10 ACO instances with a 

co-evaluation factor of 1. 

 

It is interesting to see from Table III and Table IV that the 

impact of the two parallelization factors is non-trivial.For 

example the average hyper volume result for the combination 

of 10 ACO instances with a co-evaluation factor of 1,000 

yields better result than those combinations with 100 ACO 

instances with a co-evaluation factor of 1 or 10.In regard to 

the original motivation of this research, obtaining a highly 

parallelizable many-objective optimization algorithm, it is 

important to note that the overall best result from Table III 

and IV correspond to the highest parallelization of level one 

(number of ACO instances) and level two (co-evaluation 

factor).Note that the last setup with 100 ACO instances and a 

co-evaluation factor of 1,000 required the amount of 100,000 

parallel threads, which is categorized as massive 

parallelization. All calculations in Table III and IV have been 

conducted on the K-Supercomputer. 

 

Fig. 5 and Fig 6.illustrate the set of non-dominated 

solutions obtained by the best out of 10 individual test runs 

from the first setup in Table III (10 ACO instances with a 

co-evaluation factor of 1) and last setup of Table IV (100 

ACO instances with a co-evaluation factor of 1,000) in regard 

to the first objective (ΔV) and second objective (time of 

flight). The set of non-dominated solution illustrated in Fig. 5 

correspond to a hyper volume value of 0.87954. The set of 

non-dominated solution illustrated in Fig. 6 correspond to a 

hyper volume value of 0.95389.  

 

Fig.5.Non-dominated solutions from best run of the first 

setup (co-evaluation factor 1) of Table III. 

 

 
Fig.6.Non-dominated solutions from best run of the last setup 

(co-evaluation factor 1,000) in Table IV. 

 

The illustration of the best individual run of the first setup in 

Table III was chosen, as this setup represents the lowest level 

of parallelization. The illustration of the best individual run 

of the last setup in Table III was chosen, as this setup 

represents the highest level of parallelization. Besides the 

significant difference in the value of the hyper volume 

between those two runs (HV=0.87954vs.HV= 0.95389), Fig. 

5 and Fig. 6 illustrate well the different solution space 

coverage capacities of both setups, whereas a higher level of 

parallelization is clearly in favor here. 

 

 

V. CONCLUSIONS 

 

A new algorithm (called ACOMOD) for multi- and 

many-objective optimization was discussed and numerically 

evaluated on a space mission benchmark provided by the 

European Space Agency. The numerical analysis revealed 

that the proposed algorithm does highly benefit from 

(massive) parallelization and is therefore suitable for high 

performance computing facilities like the K-Supercomputer. 

The analysis further revealed that the impact of the two 

varying parallelization factors is non-trivial and needs further 

investigation. An important implication of the (massive) 

parallelization capability of the algorithm and in particular 

it’s second parallelization level (denoted as “co-evaluation”) 

is itsapplicability to even very cpu-time expensive real-world 

application. 

APPENDIX 

Here the individual hyper volume (HV) results of each 

individual numerical test run are displayed. The here 

displayed results correspond to the average values reported in 

Table III and Table IV in Section IV. Table V shows the HV 

results of the individual runs corresponding to 10 ACO 

instances and a co-evaluation factor of 1 and 10. Table VI 

shows the HV results of the individual runs corresponding to 



  

10 ACO instances and a co-evaluation factor of 100 and 

1,000. Table VII shows the HV results of the individual runs 

corresponding to 100 ACO instances and a co-evaluation 

factor of 1 and 10. Table VIII shows the HV results of the 

individual runs corresponding to 100 ACO instances and a 

co-evaluation factor of 100 and 1,000. 

 

 

TABLE V: Individual HV results of  

numerical test runs with 10 ACO instances 

Numerical runs with  

co-evaluation factor 1 

Numerical runs with 

co-evaluation factor 10 

Run 1 0.6957159 Run 1 0.7735096 

Run 2 0.8214306 Run 2 0.8725294 

Run 3 0.8282290 Run 3 0.8458235 

Run 4 0.8504792 Run 4 0.8479869 

Run 5 0.8729078 Run 5 0.8777737 

Run 6 0.8739988 Run 6 0.8436767 

Run 7 0.8735564 Run 7 0.8751145 

Run 8 0.8685478 Run 8 0.8708845 

Run 9 0.8795437 Run 9 0.8664833 

Run 10 0.8561217 Run 10 0.8784168 

 

 

TABLE VI: Individual HV results of  

numerical test runs with 10 ACO instances 

Numerical runs with  

co-evaluation factor 100 

Numerical runs with 

co-evaluation factor 1,000 

Run 1 0.8944041 Run 1 0.9252429 

Run 2 0.8855513 Run 2 0.9381606 

Run 3 0.9068527 Run 3 0.9301337 

Run 4 0.9143026 Run 4 0.9372895 

Run 5 0.9050605 Run 5 0.9131399 

Run 6 0.9110774 Run 6 0.9491826 

Run 7 0.8992004 Run 7 0.9102161 

Run 8 0.8992033 Run 8 0.9427224 

Run 9 0.9011270 Run 9 0.9196478 

Run 10 0.8800702 Run 10 0.9294061 

 

 

TABLE VII: Individual HV results of  

numerical test runs with 100 ACO instances 

Numerical runs with  

co-evaluation factor 1 

Numerical runs with 

co-evaluation factor 10 

Run 1 0.8678095 Run 1 0.8505769 

Run 2 0.8879897 Run 2 0.8964099 

Run 3 0.8992584 Run 3 0.9023381 

Run 4 0.9060852 Run 4 0.9163643 

Run 5 0.9048196 Run 5 0.9194974 

Run 6 0.9116159 Run 6 0.9218590 

Run 7 0.9129544 Run 7 0.9194105 

Run 8 0.9114331 Run 8 0.9227522 

Run 9 0.9095349 Run 9 0.9254553 

Run 10 0.9080850 Run 10 0.9158429 

 

 

 

 

 

TABLE VIII: Individual HV results of  

numerical test runs with 100 ACO instances 

Numerical runs with  

co-evaluation factor 100 

Numerical runs with 

co-evaluation factor 1,000 

Run 1 0.9514614 Run 1 0.9536307 

Run 2 0.9536226 Run 2 0.9538555 

Run 3 0.9343257 Run 3 0.9498546 

Run 4 0.9497940 Run 4 0.9538692 

Run 5 0.9529386 Run 5 0.9342381 

Run 6 0.9522419 Run 6 0.9525265 

Run 7 0.9415437 Run 7 0.9498546 

Run 8 0.9513782 Run 8 0.9542652 

Run 9 0.9509938 Run 9 0.9419219 

Run 10 0.9538493 Run 10 0.9538889 
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