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Abstract This contribution presents a nu-
merical evaluation of the impact of paralleliza-
tion on the performance of an evolutionary al-
gorithm for mixed-integer nonlinear program-
ming (MINLP). On a set of 200 MINLP bench-
marks the performance of the MIDACO solver
is assessed with gradually increasing paralleliza-
tion factor from one to three hundred. The re-
sults demonstrate that the efficiency of the al-
gorithm can be significantly improved by par-
allelized function evaluation. Furthermore, the
results indicate that the scale-up behaviour on
the efficiency resembles a linear nature, which
implies that this approach will even be promis-
ing for very large parallelization factors. The
presented research is especially relevant to CPU-
time consuming real-world applications, where
only a low number of serial processed function
evaluation can be calculated in reasonable time.

1 Introduction

This contribution is an extended version of the
numerical study recently presented in Schlueter

and Munetomo [23]. This study discusses the op-
timization of problems known as mixed-integer
nonlinear programs (MINLP). The considered
MINLP is stated mathematically in (1), where
f(x, y) denotes the objective function to be min-
imized. In (1), the equality constraints are given
by g1,...,me(x, y) and the inequality constraints
are given by gme+1,...,m(x, y). The solution vec-
tor x contains the continuous decision variables
and the solution vector y contains the discrete
decision variables (also called integers). Fur-
thermore, some box constraints as xl, yl (lower
bounds) and xu, yu (upper bounds) for the deci-
sion variables x and y are considered in (1).

Minimize f(x, y) (x ∈ R, y ∈ Z)

subject to: gi(x, y) = 0, i = 1, ...,me

gi(x, y) ≥ 0, i = me + 1, ...,m

and bounds: xl ≤ x ≤ xu (xl, xu ∈ R)

yl ≤ y ≤ yu (yl, yu ∈ N)

(1)
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Optimization of MINLP problems is a young
and growing field in the evolutionary comput-
ing community, see e.g. Babu and Angira [1],
Cardoso [2], Costa and Oliveira [3], Deep et al.
[4], Glover [6], Liang et al. [11], Mohammed
[12], Munawar [13], Wasanapradit et al. [28],
Young et al. [30], Yiqing et al. [29] or Yue et
al. [32]. One advantage of evolutionary algo-
rithms is their robustness towards the analyt-
ical properties of the objective and constraint
functions. Therefore, in above MINLP (1) the
functions f(x, y) and g(x, y) are considered as
general black-box functions without any require-
ments, such as differentiability or smoothness.
Another advantage of evolutionary algorithms is
their capability to (greatly) benefit from paral-
lelization, see for example Du et al. [14], Laessig
and Sudholt [10], Gupta [10], Sakuray [16], Sud-
holt [27] or Yingyong et al [31]. One of the most
popular strategies to use parallelization in evolu-
tionary algorithms is the distributed computing
of the problem function evaluations. This strat-
egy is sometimes denoted as co-evaluation.

The here presented numerical study inves-
tigates the impact of a varying co-evaluation
factor on the performance of an evolution-
ary optimization algorithm on a set of 200
MINLP benchmarks (see Schittkowski [24]),
which mostly originate from the well-known
GAMS MINLPlib library [9]. Here considered
benchmark instances consist of up to 205 vari-
ables and 283 constraints, including up to 100
equality constraints (see the Appendix for details
on the benchmark instances). The focus of this
paper is to investigate and measure the efficiency
of parallelized function evaluation calls on the al-
gorithmic performance. As numerical solver, the
MIDACO optimization software is used, which
is based on an evolutionary algorithm especially

developed for mixed-integer problems and capa-
ble of seamless parallelization of function evalu-
ation calls.

This paper is structured as follows: In Section
2 a brief overview on the MIDACO algorithm is
given with an emphasis on its parallelization ap-
proach. In Section 3 the numerical results of 300
individual test runs on the set of 200 MINLP
benchmarks are illustrated and discussed. In
Section 4 a summary and general conclusions are
presented. A comprehensive Appendix lists de-
tailed individual information on all considered
benchmarks.

2 MIDACO Algorithm

MIDACO stands for Mixed Integer Distributed
Ant Colony Optimization. The evolutionary al-
gorithm within MIDACO is based on the ant
colony optimization metaheuristic for continuous
search domains proposed by Socha and Dorigo
[26] and was extended to mixed-integer domains
by Schlueter et al. in [17]. For constrained op-
timization problems the algorithm applies the
Oracle Penalty Method which was introduced in
Schlueter and Gerdts [18]. While the MIDACO
algorithm is conceptually designed as general
black-box solver, it has proven its effectiveness
especially on challenging interplanetary space
trajectory design problems (see Schlueter [21]),
where it holds several best known record solu-
tions on benchmarks provided by the European
Space Agency [5]. It is furthermore the first al-
gorithm that was able to successfully solve in-
terplanetary trajectory problems formulated as
mixed-integer problems, where the sequence of
fly-by planets was considered as integer opti-
mization variables (see Schlueter et. al. [20]).
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2.1 Parallelization Approach

The parallelization approach considered here
aims on distributing the problem function evalu-
ation. This approach is sometimes referred to as
co-evaluation. The MIDACO solver optimiza-
tion software easily enables this kind of paral-
lelization due to its reverse communication ar-
chitecture. Reverse communication means here
that the call of the objective and constraint func-
tions happens outside and independently of the
MIDACO source code.

Within a single reverse communication loop,
MIDACO does accept and returns an arbitrary
large number of P iterates x (also called ”so-
lution candidates” or ”individuals”) at once.
Hence, those P iterates can be evaluated in par-
allel, outside and independently from the MI-
DACO source code. This idea of passing a block
of P iterates at once within one reverse commu-
nication step to the optimization algorithm was
originally introduced by the code NLPQLP by
Schittkowski [25].

Figure 1: Reverse communication loop with
block of P iterates (solution candidates).

Figure 1 illustrates the reverse communication
loop where a block of P iterates is evaluated
regarding their objective function f(x) and con-

straints g(x) and then passed to the MIDACO
optimization algorithm, which then again re-
turns a new block of P iterates to be evaluated.

This concept allows an independent and user
controlled distributed computing of the objec-
tive and constraint function. In other words:
The displayed parallelization option is valid
for any language and any CPU architecture.
This includes in particular multi-core PC’s, PC-
Clusters and GPGPU (General Purpose Graph-
ical Processing Unit) based computation. In
case of MIDACO, the parallelization factor P
can furthermore be any arbitrary large integer
value, enabling a seamless and massive paral-
lelization. As this parallelization approach aims
on distributing the function evaluation calls, it
is intended for problems where the function eval-
uation are numerically expensive to compute,
which is often the case for complex real-world
applications. For further details on the paral-
lelization approach by MIDACO, please consult
[22] or [19].

3 Numerical Results

This section presents the numerical results ob-
tained by MIDACO (5.0 beta version) on the set
of 200 MINLP benchmark problems, provided
by Schittkowski [24]. In total, 300 executions on
the full set of 200 problem instances have been
conducted. Each execution considered a differ-
ent parallelization factor P (see Section 2.1) and
a different random seed. With each execution,
the parallelization factor P was incrementally in-
creased from one up to three hundred. For each
individual problem out of the library a maximal
number of function evaluation budget of ten mil-
lion was assigned. No time limit was enforced on
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any run. Each individual test run on each prob-
lem was either stopped if the maximal evaluation
budget was reached, or if the global1 optimal so-
lution was obtained.

The criteria for reaching a global optimal solu-
tion (x∗, y∗) by an approximation (x̂, ŷ) is given
in Equation (2).

f(x̂, ŷ) ≤ f(x∗, y∗) +
‖f(x∗, y∗)‖

100

‖g(x̂, ŷ)i=1,...,me‖ ≤ 0.01

g(x̂, ŷ)i=me+1,...,m ≥ − 0.01

(2)

Equation (2) implies that a test run was con-
sidered successful, if the approximative solution
(x̂, ŷ) reached by MIDACO was as close as 1%
to the global optimal solution objective function
value f(x∗, y∗) while satisfying all constraints
with a precision of at least 0.01. Note that
the tolerance of 0.01 for the constraint viola-
tion is chosen here rather moderate. This is
due to the relatively large number of (up to one
hundred) equality constraints in several bench-
mark instances (see Appendix). For real-world
problems, solutions with higher precision in the
constraint satisfaction can normally be achieved
easily with refinement runs. The lower bounds
of each problem instance were used as start-
ing point and the original bounds2 provided by

1The best known numerical f(x, y) values provided in
Schittkowski [24] were used as global optimal solutions
throughout this study.

2Note that the original bounds provided in Schit-
tkowski [24] on the problem instance are sometimes huge
in the context of evolutionary computing, where the entire
search space is sampled. This makes some of the instance
exceptionally hard to solve with evolutionary methods.

Schittkowski [24] were considered for each prob-
lem. Except for the parallelization factor, all
MIDACO parameters were set to default.

Table 1 displays the number of optimal solu-
tions obtained for various test runs on the full
set of 200 MINLP benchmarks. The number of
each run equals the parallelization factor P used
in such run. The abbreviations for Table 1 are
as follows:

Run = P : Individual run on 200 benchmarks
(using a parallelization factor of P)

Optimal : Number of global optimal solutions
Blocks : Average performed blocks
Evaluation : Average number of evaluation

All numerical runs were conducted on a Desk-
top computer with XEON cpu with 3.47GHz
clock-rate, 4GB RAM memory and six physi-
cal cores. The total time to calculate all 300
executions on the full benchmark library took
521,009 seconds, which is around six days. It
is important to note that for the here pre-
sented results the co-evaluation of objectives and
constraints was calculated on a single thread
and not distributed by common parallelization
schemes, such as OpenMP [8] or MPI [8]. The
reason is that all benchmark function in this
study are computational cheap (take only mil-
liseconds to compute) and any actual parallelized
computing scheme would introduce a computing
overhead which would in fact increase overall cal-
culation times rather than reducing them. The
presented results nevertheless accurately repre-
sent the factor of reduced serial processed func-
tion evaluation and that the results are therefore
fully valid to estimate the performance gain in
parallel executed function evaluation for CPU-
time intensive real-world applications.
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Table 1: Number of optimal solutions obtained
by MIDACO in various runs on 200 Benchmarks

Run = P Optimal Blocks Evaluation

1 160 2,747,356 2,747,356
10 160 284,719 2,847,195
20 156 162,785 3,255,716
30 155 107,293 3,218,808
40 159 82,824 3,312,999
50 156 67,314 3,365,719

100 152 38,214 3,821,471
150 151 27,099 4,064,936
200 144 22,689 4,537,802
250 148 17,980 4,495,111
300 144 15,979 4,793,737

From Table 1 it can be seen that MIDACO ob-
tained in its first run (which had a parallelization
factor of one and therefore no actual paralleliza-
tion) a number of 160 global optimal solutions
on the set of 200 benchmarks. It is important to
note that the number of processed blocks in the
first run equals the number of evaluation, which
where about 2.7 million (2,747,356). Table 1 il-
lustrates that the number of global solutions ob-
tained by MIDACO in regarding to various in-
dividual test runs from one to three hundred.
Note in Table 1 that for an increased paralleliza-
tion factor P the average number of blocks de-
creases while the average number of total per-
formed function evaluation increases. While in
the first run around 2.7 million blocks had to be
processed on average, it is only a 15,979 blocks
for parallelization factor of 300. Therefore a re-
duction of around 2747356

15979 ≈ 171.9 times in the
number of processed blocks could be achieved
for the maximalconsidered parallelization factor
of P=300, while the number of optimal solved
instances dropped only by 10.0% (144 in com-

parison to 160).

Additionally to Table 1 the numerical results
are illustrated in Figure 2 which displays the in-
dividual and average1 number of optimal opti-
mal solutions obtained by MIDACO in each of
the 300 executions on the full benchmark library.

Figure 2: Optimal solutions at run 1 to 300.

From Table 1 it can be seen how the MI-
DACO algorithm benefits in drastically reducing
its number of processed blocks by parallelization,
while still maintaining a similar high number of
global optimal solutions. From Figure 2 it can
be seen that such trend exhibits a more or less
linear behaviour.

1The smooth function provided by Matlab was used to
approximate the average from the raw data of individual
global optimal solutions.
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In order to give a more sophisticated answer to
the question, how the efficiency of the algorithm
scales with the parallelization factor, a new cri-
teria for the algorithmic efficiency is now intro-
duced here. Based on the first run, which ex-
emplifies the unparalleled performance, the ”Ef-
ficiency” of a run (which number equals its par-
allelization factor) should be measured as given
in Equation (3).

Efficiency(run) =

#Optimal(run)

#Optimal(1st run)
· #Blocks(1st run)

#Blocks(run)

(3)

Equation (3) measures the ”Efficiency” based
on a multiplication of a ratio of optimal obtained
solutions with a ratio of required blocks. Be-
cause the number of optimal solutions is desired
to be as high as possible, the average number
of optimal solutions appear in the numerator of
the ratio, while the number of optimal solutions
from the first run appear in the denominator of
the ratio. Contrary to desired number of opti-
mal solutions, the number of blocks is desired to
be as low as possible and hence the blocks re-
quired in the first run appear in the numerator,
while the average number of blocks appear in the
denominator. The efficiency measure given by
Equation 3 can be calculated for each of the 300
runs on the full library of test problems. Figure
3 displays the efficiency measure for all such 300
runs.

Table 2 lists some of the individual efficiency
measure values for various runs and additionally

displays the second term ( #Blocks(1st run)
#Blocks(run) ) of

the efficiency measure formula given in Equation
(3).

Figure 3: Dependence of efficiency on paralleliza-
tion

Table 2: Efficiency of P factor

Run = P #Blocks(1st run)
#Blocks(run) Efficiency(P)

1 1.0 1.0
10 9.6 9.5
20 16.8 16.6
30 25.6 27.2
40 33.1 32.4
50 40.8 39.7
100 71.8 68.9
150 101.3 95.2
200 121.0 112.0
250 152.8 139.3
300 171.9 154.7

From Figure 3 it can be observed that the scale
up effect on the algorithmic efficiency (thus, re-
ducing the number of serial processed function
evaluation) resembles a nearly linear behaviour,
which appears to be particularly robust for par-
allelization factors below 30. This behaviour in-
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dicates that parallelization will further signifi-
cantly improve performance even for much larger
parallelization factors. In regard to the concrete
set of 200 instances, it can be seen from Figure 3
and Table 2, that a parallelization factor of 300
makes the MIDACO algorithm over 150 times
more effective as in serial mode. In other words:
Using a parallelization factor of 300 reduces the
number of (serial processed) function evaluation
by a factor of 150.

3.1 Additional Numerical Results

In addition to the previously presented nu-
merical results investigating the parallelization
effect on MIDACO, a separate numerical test
run investigating MIDACO’s capability to locate
global optimal solutions is shown here. In con-
trast to previous numerical runs, which consid-
ered 100 executions applying a maximal function
evaluation budget of 10 millions to each prob-
lem, a single (unparalleled) run on the full li-
brary with a time limit of 3 hours (10080 sec-
onds) for each problem instance is considered
here. Purpose of this additional numerical run
is to evaluate the fundamental potential of MI-
DACO to solve even the harder instances of the
test bed. Again, the lower bounds of each prob-
lem instance were used as starting point and the
original bounds were considered for each prob-
lem. All MIDACO parameter were set to de-
fault.

Table 3 lists a summary of the results obtained
by MIDACO on the full library. Note that the
execution of this test run took 3.7 days of CPU-
time.

Table 3: MIDACO performance on 200 MINLP’s
Number of problems in total: 200

Number of optimal solutions: 172
Number of feasible solutions: 194

Average evaluation: 7,548,745
Average CPU-time: 1,635.3 sec

Total CPU-time: 3.7 days

From Table 3 it can be seen that MIDACO is
able to obtain in 194 out of 200 cases a feasi-
ble solution. Out of this 194 feasible solutions,
172 solutions were globally optimal. The aver-
age number of function evaluation took around
7.5 million which where processed in about half
an hour (1635 sec) on average.

The Appendix lists the individual MIDACO
results on each of the 200 MINLP instances.
In regard to the number of variables, MIDACO
is able to solve the largest instance in the set
(see benchmark ”PARALLEL” in Table 5) to
global optimality in about 15 minutes. This
”PARALLEL” instance considered 205 variables
and 115 constraints, including 81 equality con-
straints. Other large instances that could be
solved to global optimality include ”M7” with
114 variables and 211 constraints or ”MINL-
PHIX” with 84 variables and 92 constraints.
Several instances with over a hundred varib-
ales and/or constraints are solved to a feasible
but not global optimal solution, see e.g. bench-
mark M6, ST E31, RAVEM and EX1244. Note
that the majority of problems containing only
few variables and/or constraints are solved to
global optimality within less than 0.05 seconds
and most instances with ten’s of variables and/or
constraints are solved within few seconds or even
below a second.
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4 Conclusion

A numerical assessment of the performance scal-
ability of an evolutionary optimization algorithm
on a set of 200 mixed integer nonlinear program-
ming instances was presented. The MIDACO
optimization software was chosen to represent
the evolutionary algorithm as it offers mixed-
integer capability combined with a seamless par-
allelization feature (see Section 2.1). In Section
3 it was demonstrated, that the performance in
obtaining global optimal solutions can be signif-
icantly improved by evaluating blocks of solu-
tion candidates in parallel. Performance was un-
derstood here in a reduction of serial processed
blocks, while maintaining a similar high num-
ber of optimal solutions. In Section 3 (Table 2)
it was shown that for a parallelization factor of
P=300 the MIDACO performance could be im-
proved over 150 times in comparison to its un-
parallelized behaviour. As many real-world ap-
plications are CPU-time intensive, the required
number of serial processed blocks often marks
the bottleneck in optimizing such applications.
Hence the presented results are especially rel-
evant to this kind of CPU-time intensive real-
world applications.

Another interesting finding of this study con-
cerns the scale-up behaviour observed. From
Figure 3 in Section 3 it could be seen that
the scale-up effect resembles a nearly linear be-
haviour, whereas especially for low paralleliza-
tion factors (less than 30) the efficiency gain
was close to its theoretical maximum. Such be-
haviour implies that the algorithm will further
significantly benefit from even much larger par-
allelization factors. Given that parallelization is
a growing trend in CPU-architecture, this obser-
vation is encouraging.

Appendix

This Appendix lists all 200 MINLP benchmark
instances with their name and number and type
of variables and constraints in Table 5. It fur-
thermore reports the MIDACO (5.0 beta ver-
sion) default performance with a maximal CPU-
time budget of 3 hours (10080 seconds). For de-
tailed information on the global optimality cri-
teria see Section 3. Note that in two benchmark
cases (ST TEST1 and WU 4) the global opti-
mal solution lies on the lower bounds and hence
equals the starting point, which implies a re-
ported single evaluation in Table 5. Note that
in Schlueter and Munetomo [23] a enlarged ver-
sion of this appendix can be found, additionally
listing the number of function evaluation for each
benchmark.

Table 4: Abbreviations used in Table 5

Abbreviation Description

Name Name of the benchmark instance
n Number of variables (in total)
ni Number of integer variables
m Number of constraints (in total)
me Number of equality constraints

Time Amount of CPU-time (in seconds)

Status: Solution status obtained by MIDACO

√
Status = Global optimum reached

- Status = Feasible local solution
x Status = Infeasible solution
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Table 5: MINLP benchmarks results

Benchmark Details MIDACO Result

Name n ni m me Time Status

MITP1 5 3 1 0 0.0
√

MITP2 5 3 7 0 0.0
√

QIP1 4 4 4 0 0.0
√

ASAADI11 4 3 3 0 0.0
√

ASAADI12 4 4 3 0 0.0
√

ASAADI21 7 4 4 0 0.0
√

ASAADI22 7 7 4 0 0.0
√

ASAADI31 10 6 8 0 0.0
√

ASAADI32 10 10 8 0 0.0
√

DIRTY 25 13 10 0 0.0
√

BRAAK1 7 3 2 0 0.0
√

BRAAK2 7 3 4 0 0.0
√

BRAAK3 7 3 4 0 0.0
√

DEX2 2 2 2 0 0.0
√

FUEL 15 3 15 6 2.0
√

WP02 2 1 2 0 0.0
√

NVS01 3 2 3 1 0.1
√

NVS02 8 5 3 3 0.1
√

NVS03 2 2 2 0 0.0
√

NVS04 2 2 0 0 0.0
√

NVS05 8 2 9 4 10800.0 -
NVS06 2 2 0 0 0.0

√

NVS07 3 3 2 0 0.0
√

NVS08 3 2 3 0 0.0
√

NVS09 10 10 0 0 0.0
√

NVS10 2 2 2 0 0.0
√

NVS11 3 3 3 0 0.0
√

NVS12 4 4 4 0 0.0
√

NVS13 5 5 5 0 0.0
√

NVS14 8 5 3 3 0.0
√

NVS15 3 3 1 0 0.0
√

NVS16 2 2 0 0 0.0
√

NVS17 7 7 7 0 0.0
√

NVS18 6 6 6 0 0.0
√

NVS19 8 8 8 0 0.0
√

Table 6: MINLP benchmarks results (continued)

Benchmark Details MIDACO Result

Name n ni m me Time Status

NVS20 16 5 8 0 0.1
√

NVS21 3 2 2 0 0.0
√

NVS22 8 4 9 4 1047.3
√

NVS23 9 9 9 0 0.0
√

NVS24 10 10 10 0 0.0
√

GEAR 4 4 0 0 0.0
√

GEAR2 28 24 4 4 0.1
√

GEAR2A 28 24 4 4 0.2
√

GEAR3 8 4 4 4 0.0
√

GEAR4 6 4 1 1 0.1
√

M3 26 6 43 0 5.1
√

M6 86 30 157 0 10800.0 -
M7 114 42 211 0 10514.2

√

FLOUDAS1 5 3 5 2 0.0
√

FLOUDAS2 3 1 3 0 0.0
√

FLOUDAS3 7 4 9 0 0.0
√

FLOUDAS4 11 8 7 3 3.2
√

FLOUDAS40 11 8 7 3 0.0
√

FLOUDAS5 2 2 4 0 0.0
√

FLOUDAS6 2 1 3 0 0.0
√

SPRING 17 12 8 5 0.0
√

DU OPT5 20 13 9 0 0.1
√

DU OPT 20 13 9 0 0.3
√

ST E13 2 1 2 0 0.0
√

ST E14 11 4 13 4 0.1
√

ST E15 5 3 5 2 0.0
√

ST E27 4 2 6 0 0.0
√

ST E29 11 8 7 2 0.9
√

ST E31 112 24 135 81 10800.0 -
ST E32 35 19 18 17 1876.8

√

ST E35 32 7 39 15 9.6
√

ST E36 2 1 2 1 0.0
√

ST E38 4 2 3 0 0.0
√

ST E40 4 3 8 4 0.0
√

ST MIQP1 5 5 1 0 0.0
√
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Table 7: MINLP benchmarks results (continued)

Benchmark Details MIDACO Result

Name n ni m me Time Status

ST MIQP2 4 4 3 0 0.0
√

ST MIQP3 2 2 1 0 0.0
√

ST MIQP4 6 3 4 0 0.1
√

ST MIQP5 7 2 13 0 0.1
√

ST TEST1 5 5 1 0 0.0
√

ST TEST2 6 6 2 0 0.0
√

ST TEST3 13 13 10 0 0.0
√

ST TEST4 6 6 5 0 0.0
√

ST TEST5 10 10 11 0 0.0
√

ST TEST6 10 10 5 0 0.0
√

ST TEST8 24 24 20 0 0.7
√

TESTGR1 10 10 5 0 0.0
√

TESTGR3 20 20 20 0 0.0
√

TESTPH4 3 3 10 0 0.0
√

TLN2 8 8 12 0 0.0
√

TLN4 24 24 24 0 0.1
√

TLN5 35 35 30 0 0.6
√

TLN6 48 48 36 0 6.6
√

NEJI 3 1 6 0 0.0
√

TST NAG 8 4 7 2 10800.0 x
TLOSS 48 48 53 0 10800.0 -
TLTR 48 48 54 0 0.2

√

MEANVARX 35 14 44 8 0.3
√

MINLPHIX 84 20 92 30 1722.2
√

MIP EX 5 3 7 0 0.0
√

MGRID C1 5 5 1 0 0.0
√

MGRID C2 10 10 1 0 0.0
√

CROP5 5 5 3 0 0.0
√

CROP20 20 20 3 0 0.1
√

CROP50 50 50 3 0 0.1
√

CROP100 100 100 3 0 4.3
√

SPLITF1 12 9 9 3 0.0
√

SPLITF2 24 18 15 6 0.0
√

SPLITF3 24 18 15 6 0.3
√

SPLITF4 24 18 15 6 0.1
√

SPLITF5 24 18 15 6 0.4
√

Table 8: MINLP benchmarks results (continued)

Benchmark Details MIDACO Result

Name n ni m me Time Status

SPLITF6 24 18 15 6 0.0
√

SPLITF7 36 27 21 9 140.8
√

SPLITF8 36 27 21 9 0.4
√

SPLITF9 36 27 21 9 1.0
√

ELF 54 24 38 6 9.2
√

SPECTRA2 69 30 72 9 10800.0 -
WINDFAC 14 3 13 13 56.4

√

CSCHED1 76 63 22 12 10800.0 -
ALAN 8 4 7 2 0.2

√

PUMP 24 9 34 13 10800.0 -
RAVEM 112 54 186 25 10800.0 -
ORTEZ 87 18 74 24 10800.0 -
EX1221 5 3 5 2 0.0

√

EX1222 3 1 3 0 0.0
√

EX1223 11 4 13 4 0.5
√

EX1223A 7 4 9 0 0.0
√

EX1223B 7 4 9 0 0.0
√

EX1224 11 8 7 2 0.8
√

EX1225 8 6 10 2 0.0
√

EX1226 5 3 5 1 0.0
√

EX1233 52 12 64 20 10800.0 -
EX1243 68 16 96 24 10800.0 -
EX1244 95 23 129 30 10800.0 -
EX1252 39 15 43 22 10800.0 -
EX1263 92 72 55 20 10800.0 -

EX1263A 24 24 35 0 0.7
√

EX1264 88 68 55 20 10800.0 -
EX1264A 24 24 35 0 3.0

√

EX1265 130 100 74 30 10800.0 -
EX1265A 35 35 44 0 2.0

√

DIOPHE 4 4 1 1 0.0
√

EX1266A 48 48 53 0 10800.0 -
GBD 4 3 4 0 0.0

√

EX3 32 8 31 17 41.0
√

EX4 36 25 30 0 0.5
√

FAC1 22 6 18 10 0.3
√
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Table 9: MINLP benchmarks results (continued)

Benchmark Details MIDACO Result

Name n ni m me Time Status

FAC2 66 12 33 21 9.2
√

FAC3 66 12 33 21 8.8
√

GKOCIS 11 3 8 5 0.0
√

KG 9 2 9 5 0.2
√

SYNTHES1 6 3 6 0 0.0
√

SYNTHES2 11 5 14 1 0.0
√

SYNTHES3 17 8 23 2 0.3
√

PARALLEL 205 25 115 81 1159.4
√

SYNHEAT 56 12 64 20 10800.0 -
SEP1 29 2 31 22 25.6

√

DAKOTA 4 2 2 0 0.0
√

BATCH 47 24 73 12 36.9
√

BATCHDES 19 9 19 6 0.0
√

ENIPLAC 141 24 189 87 10800.0 x
PROB02 6 6 8 0 0.0

√

PROB03 2 2 1 0 0.0
√

PROB10 2 1 2 0 0.0
√

NOUS1 50 2 43 41 10800.0 -
NOUS2 50 2 43 41 10800.0 -
TLS2 37 33 24 6 2.1

√

TLS4 105 89 64 20 10800.0 -
TLS5 161 136 90 30 10800.0 -
OAER 9 3 7 3 0.0

√

PROCSEL 10 3 7 4 0.5
√

LICHOU 1 2 1 2 1 0.0
√

LICHOU 2 4 2 4 0 0.0
√

LICHOU 3 3 3 4 0 0.0
√

WU 1 32 32 0 0 0.0
√

WU 2 32 32 0 0 0.0
√

WU 3 64 64 0 0 0.0
√

WU 4 64 64 0 0 0.0
√

OPTPRLOC 30 25 30 0 0.0
√

GASNET 90 10 69 48 10800.0 x

Table 10: MINLP benchmarks (continued)

Benchmark Details MIDACO Result

Name n ni m me Time Status

TP83 5 4 6 0 0.0
√

TP84 5 2 6 0 0.0
√

TP85 5 3 38 0 0.0
√

TP87 6 2 4 4 0.0
√

TP93 6 1 2 0 0.1
√

FEEDTRAY 97 7 91 83 10800.0 x
FEEDTRAY2 87 36 283 6 10800.0 x
HILBERT20 20 20 20 20 2.0

√

HILBERT50 50 50 50 50 1084.9
√

HILBERT100 100 100 100 100 6872.4
√

SLOPPY 6 6 3 0 0.0
√

RASTRIGIN 2 1 0 0 0.0
√

EMSO 6 3 4 0 0.0
√

TP1 2 2 0 0 0.0
√

TP1A 2 2 0 0 0.0
√

TP1B 2 2 0 0 0.0
√

TP9 2 2 1 1 0.0
√

TP10 2 2 1 0 0.0
√

DEB10 182 22 129 65 10800.0 x
IRAP1 68 68 18 0 1.7

√

IRAP2 38 38 20 0 0.0
√

IRAP3 40 40 21 0 0.0
√

IRAP4 45 45 16 0 1.1
√

IRAP5 60 60 16 0 2.5
√

IRAP6 34 34 18 0 0.0
√
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