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Abstract. This contribution presents numerical results for global optimization of a multi-objective formulation of the well-known
Cassini1 interplanetary space trajectory benchmark published by the European Space Agency (ESA). The original Cassini1 bench-
mark is a single-objective problem and frequently used as case study for global optimization algorithms due to its highly non-
convex and very sensitive objective function. Here, the problem is extended to four objectives and thus classified as many-objective
problem. The MIDACO optimization software represents an evolutionary hybrid algorithm and is used to solve the considered ap-
plication in regard to two aspects. The first aspect considers the impact of massively parallelized co-evaluation in regard to reaching
the global optimal solution and its influence on the solution objective space (particular the Pareto front shape). As a second aspect,
the impact of a varying BALANCE parameter, which controls how much importance is given to each individual objective within a
multi-objective preference scheme recently introduced as Utopia-Nadir-Balance, on the Pareto front shape is given. In regard to the
first aspect, the results show that massive parallelization is an effective remedy to reduce the notoriously high number of sequential
function evaluation while still maintaining a sufficient well distributed Pareto front. In regard to the second aspect, the results in-
dicate that an exclusive focus on the first objective is preferable over a BALANCE parameter which distributes the preference over
several objectives for this very special kind of application.
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INTRODUCTION

Interplanetary space mission trajectory design is a challenging and active area for applying global optimization algo-
rithms. Since 2005 the Advanced Concept Team (ACT) of the European Space Agency (ESA) publishes a database of
Global Trajectory Optimization (GTOP) benchmarks [3] formulated as single-objective optimization problems. The
easiest1 and most widely used instance of the GTOP set is the Cassini1 benchmark problem, which consist of six
decision variables and four non-linear constraints (see [3] for details). This contribution considers a many-objective
extension of this benchmark, which was introduced in Schlueter et al. [4] and which consists of four objectives. Table
1 list those four objectives together with their description, units and function properties. Note that the first objective is
the original one. Ant Colony Optimization (ACO) in general and the MIDACO software in particular has been shown

TABLE 1. Four Objectives for Cassini1 Benchmark

Objective Description Unit Function properties

F1 Total ∆V (including ∆V∞) Km/Sec highly non-linear and non-convex
F2 Time of Flight Days linear (sum of variables

∑6
i=2 xi)

F3 Launch Date MJD2000 linear (first variable x1)
F4 Launch ∆V∞ Km/Sec non-linear and non-convex

1In contrast to the easiest instance, the Messenger [7] benchmark is considered the most difficult instance of the GTOP benchmark set.



to be efficient for optimizing the design of interplanetary space trajectories, see for example [1], [2] or [5].
The first research aspect of this contribution concerns the impact of massively parallelized co-evaluation of solu-

tion candidates on the overall number of sequential steps (called ”Blocks”, see Section 2.1 in [6] for details) required
to solve the Cassini1 benchmark to its best-known solution in regard to the first objective. The F1 objective describes
the total ∆V (km/sec), which is equivalent to the required propulsion (fuel) of the mission. This objective is by far the
most complex one considered among the four objectives listed in Table 1. Besides the expected reduction of sequential
steps by applying massive parallelization, this contribution is also concerned with the impact of parallelization on the
amount and distribution of non-dominated solutions among the four-dimensional objective space.

The second research aspect of this contribution concerns the impact of the recently introduced Utopia-Nadir-
Balance [4] concept for multi-objective optimization. This concept represents a decomposition approach where a
preference can be given to a certain objective or a combination of several individual objectives. The here presented
results investigate if and how the set of non-dominated solution will change in regard to various BALANCE parameter
values, which control the preference scheme.

NUMERICAL RESULTS AND CONCLUSION ON
THE IMPACT OF MASSIVE PARALLELIZATION

This section presents numerical results of applying MIDACO 6.0 on the four-objective extended Cassini1 benchmark.
The parallelization factor P, which defines the amount of parallel processed solution candidates within one sequential
algorithmic step, is varied from one to 1024 by exponentiating the value of two (see first column of Table 2). For
each value of P, 30 individual test runs are conducted, each using a different random-seed and using the original
lower bounds as starting point. An individual test run is considered successful and stopped, if the best known value
(4.9307) in the first objective (F1) is reached within a precision of 0.1%1 In regard to the many-objective nature of this
problem, the first objective is set as exclusive target function to be minimized while the remaining three objectives are
only filtered for non-dominance. Table 2 lists the best, worst and average results out of 30 test runs in regard to the
required number of sequential steps (called ”Blocks”) and the corresponding number of overall function evaluation.
From Table 2 it can be seen that the average number of Blocks can be significantly reduced from 1,114,440 in the serial

TABLE 2. Numerical Results for 30 test runs with a varying parallelization factor P from 1 to 1024

Best run out of 30 Worst run out of 30 Average over 30 runs
P Blocks Evaluation Blocks Evaluation Blocks Evaluation Speed Up Factor

1 255,017 255,017 2,976,114 2,976,114 1,114,440 1,114,440 1.00
2 175,815 351,630 3,569,693 7,139,386 947,207 1,894,414 1.18
4 120,180 480,720 2,348,015 9,392,060 785,786 3,143,145 1.42
8 45,035 360,280 443,219 3,545,752 176,586 1,412,695 6.31
16 68,058 1,088,928 420,124 6,721,984 156,488 2,503,819 7.12
32 106,382 3,404,224 212,239 6,791,648 142,003 4,544,125 7.85
64 4,409 282,176 189,996 12,159,744 116,850 7,478,434 9.54

128 1,868 239,104 129,772 16,610,816 93,457 11,962,525 11.93
256 3,922 1,004,032 117,153 29,991,168 90,172 23,084,202 12.36
512 3,300 1,689,600 115,993 59,388,416 51,711 26,476,424 21.55

1024 2,322 2,377,728 78,000 79,872,000 26,654 27,293,866 41.81

case (P=1) to 26,654 in the massively parallelized case of P=1024. In other words: While the MIDACO algorithm
required about 1.1 million sequential function evaluation in the serial case to reach the best-known solution in high
precision, the same solution could be reached within only about 26 thousand blocks of sequential function evaluation,
whereas each such block contained 1024 individual function evaluation. Such reduction equals a speed up factor of
about 41.81 times. The ”Evaluation” column in Table 2 shows the number of total function evaluation corresponding
to each P. In the serial case, the best run required 255,017 function evaluation in total to reach the best known solution.

From Table 2 it can be further seen that the number of Blocks for the best out of 30 runs shows a non-monotonic
behavior and significant variance (e.g. 106.382 Blocks for P=32 versus only 4,409 Blocks for P=64). This great

1Note that 0.1% is the official required precision upon which ACT/ESA considers the benchmark to be solved.



variance is explained by the highly non-linear nature of the objective landscape, which implies a strong dependence
on the random-seed used for each individual test run. A larger set of test runs will be necessary to reduce that effect.

The overall best test run was reached for a parallelization factor of P=128 and it required only 1,868 sequential
steps. Figure 1 display the final set of non-dominated solutions respectively for the best run of the P=1 and P=1024
case. Note that while left side of Figure 1 shows visibly less non-dominated solutions than right side, it still captures
the most relevant trade-off part of the front between the total ∆V (F1) and flight time (F2). The large difference in the
algorithmic behavior between the serial and massively parallelized case is also well observable by the quite different
scattering of the set of the last 30,000 evaluation, illustrated in the plots as tiny black crosses. In Figure 1 the position
of the individual MIDACO solution among the Pareto front is highlighted as semi-transparent green hexagon. 1

FIGURE 1. Pareto fronts for best run out of the serial case test runs (P=1) and the massive parallel case test runs (P=1024).

NUMERICAL RESULTS AND CONCLUSION ON
THE BALANCE PARAMETER IMPACT

This section presents numerical results that investigate the impact of a varying BALANCE on the shape of the Pareto
front as well as on the capability to reach the best-known solution in regard to the first objective. Table 3 reports
the considered four different BALANCE parameters, their impact on the multi-objective search preference and the
best result achieved in regard to the first objective function. Figure 2 illustrates the Pareto front for the case that the
BALANCE is put exclusively on the first objective and the default case, where each of the four objectives is treated
with equal importance. Figure 3 illustrates the Pareto front for two fine-tuning cases of the BALANCE parameter,
the left side of 3 illustrates the results for a BALANCE parameter that onlye takes into account the first and second
objective, while the right side of 3 illustrates the results for a BALANCE parameter that takes into account all four
objectives but emphazises on the first objective. Note that in contrast to the results in the previous section (Figure 1) a
finer epsilon tolerance for the Pareto dominance filtering was used to create the plots in Figure 2 and 3, which results
generally in more displayed non-dominated solutions.

From Figure 2 and Figure 3 it can be seen that the BALANCE parameter that puts exclusive focus on the first
objective delivers a Pareto front which is most detailed on interesting vertical trade-off edge between propulsion
(Total ∆V) and flight of time (F2). Those results indicate that selecting the most challenging objective function (F1)
as exclusive target is a valid strategy for this special kind of application.

1The third objective (launch date) is represented in the graphics via a varying marker symbol size. Smaller size means earlier launch date.



TABLE 3. Best value for first objective (F1) among the entire Pareto front for varying BALANCE parameters

BALANCE Description of BALANCE impact on search effort best F1 (Total ∆V) value

1.0000 putting the entire focus exclusively on the first objective F1 4.930804
0.0000 treating all four objectives with equal importance (default) 6.354540
0.9100 major focus on F1, minor focus on F2, zero focus on F3 and F4 6.895454
0.9111 major focus on F1, minor focus on F2, F3 and F4 6.669765

FIGURE 2. Pareto front results for a BALANCE parameter putting the importance entirely on the first objective (left) and a
BALANCE parameter putting equal importance on all four objectives (right).

FIGURE 3. Pareto front results for a BALANCE parameter putting the major importance on the first objective and a minor
importance only on the second objective (left) and a BALANCE parameter putting the major importance on the first objective and
a minor importance on all remaining three objectives (right).
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