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MINLP - Mixed Integer Nonlinear ProgrammingThe Optimization Problem

General MINLP problem:

Minimize f (x , y) (x ∈ Rncon , y ∈ Znint , ncon, nint ∈ N)

subject to: gi (x , y) = 0, i = 1, ...,me ∈ N
gi (x , y) ≥ 0, i = me + 1, ...,m ∈ N
xl ≤ x ≤ xu (xl , xu ∈ Rncon )

yl ≤ y ≤ yu (yl , yu ∈ Nnint )

• No information on f () or g() available [Blackbox]

−→ non-convex, no gradients, stochastic noise

• Integers must be integers (no relaxation)
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Evolutionary Algorithms

Key Features of Evolutionary Algorithms

1 Evolution: Random Mutations + Survival of the fittest

2 Goal: Find a good solution in reasonable time

3 GOOD: [Black-Box] Robust & (Very) Easy to use

4 BAD: No guarantee & Many Evaluation

5 Very popular

"optimization algorithm" gets 1,500,000 Google hits
"evolutionary algorithm" gets 730,000 Google hits
"numerical algorithm" gets 390,000 Google hits
"deterministic algorithm" gest 180,000 Google hits
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Evolutionary Algorithms

Evolutionary Algorithms for MINLP

1 (Very) young field −→ lot’s of unexplored research opportunities

2 Very few software codes available

3 Hardly any comparison with deterministic MINLP algorithms
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ACO - Ant Colony OptimizationACO - Ant Colony Optimization

ACO - Ant Colony Optimization

(or: Stochastic Gauss Approximation Algorithm)
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ACO - Ant Colony OptimizationACO - Ant Colony Optimization

ACO in a Nutshell

1 Terminology: Ant = Solution (x , y) & Fitness = Objective f (x , y)

2 Step 1: Randomly choose a number of P Ants −→ Initial Solutions
3 Step 2: Select the number of K Ants with the best fitness
4 Step 3: Use Gauss-PDF (on K best Ants) to create P new Ants

Repeat Step 2 & 3

5 P stands for Population size, P must be larger than K
6 K stands for Kernel size in multi-kernel Gauss PDF’s
7 Every Step 2 is called a Generation of Ants
8 Step 3 can be (massively) parallelized
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ACO - Ant Colony OptimizationACO - Ant Colony Optimization

ACO convergence of multi-kernel PDF’s

PDF for continous x PDF for discrete y
( Solution x = 0 ) ( Solution y = 0 )
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Oracle Penalty MethodOracle Penalty Method

The Oracle Penalty Method in a Nutshell

1 Idea: Help the algorithm by providing expert knowledge −→ Oracle

2 Example: Engineer has an application wich currently cost 1000$

ACO algorithm finds in 1st Generation three solutions:

Solution 1: f(x) = 2000$ (feasible)
Solution 2: f(x) = 800$ (slightly infeasible)
Solution 3: f(x) = 100$ (very infeasible)

Which solution should be further investigated by ACO ?

Static Penalty: Solution 1 is preferred
Oracle Penalty: Solution 2 is preferred
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Oracle Penalty MethodOracle Penalty Method

What if the expert has no clue about the (global) optimal f(x) value ?

−→ Automatic Oracle Update (MIDACO Default)

ACO Run 0 with oracle Ω =∞ −→ solution 1100$ (feasible)
ACO Run 1 with oracle Ω = 1100 −→ solution 900$ (feasible)
ACO Run 2 with oracle Ω = 900 −→ solution 855$ (feasible)
ACO Run 3 with oracle Ω = 855 −→ solution 850$ (feasible)
ACO Run 4 with oracle Ω = 850 −→ solution 848$ (infeasible)
ACO Run 5 with oracle Ω = 850 −→ solution 849$ (infeasible)

Overall solution 850$ found with an oracle Ω=855

The savest oracle is slightly above the global optimal f(x)

Careful: Underestimated oracles often lead to infeasible solutions
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Oracle Penalty MethodOracle Penalty Method

Mathematical formulation of the penalty (merit) function p(x),
depending on the oracle parameter Ω

p(x) =

{
α · |f (x)− Ω|+ (1− α) · res(x) , if f (x) > Ω or res(x) > 0

−|f (x)− Ω| , if f (x) ≤ Ω and res(x) = 0

where α is given by:

α =



|f (x)−Ω|· 6
√

3−2
6
√

3
−res(x)

|f (x)−Ω|−res(x)
, if f (x) > Ω and res(x) <

|f (x)−Ω|
3

1 − 1

2

√
|f (x)−Ω|

res(x)

, if f (x) > Ω and |f (x)−Ω|
3 ≤ res(x) ≤ |f (x) − Ω|

1
2

√
|f (x)−Ω|

res(x)
, if f (x) > Ω and res(x) > |f (x) − Ω|

0 , if f (x) ≤ Ω

Note that res(x) is the constraint violation, e.g. L1-Norm
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Oracle Penalty MethodOracle Penalty Method

Graphical illustration of the oracle penalty function for Ω = 0 )

Martin Schlueter Global Optimization of MINLP by Evolutionary Algorithms - APMonitor Webinar 26 Feb 2014 15 / 45



Optimization Problem Evolutionary Algorithms Software Numercial Results MINLP Space Applications References Conclusions

MIDACO - Mixed Integer Distributed Ant Colony OptimizatonThe Optimization Software

Mixed Integer Distributed Ant Colony Optimization
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MIDACO - Mixed Integer Distributed Ant Colony OptimizatonThe Optimization Software

Key features of MIDACO:

1 Written entirely from scratch in F77 (7+ Years of Development)

2 No sub-solvers or external libraries (e.g. LAPACK or BOOST)

3 Written in (blind) reverse communication −→ portable everywhere

4 Language: Excel/VBA, Matlab, Octave, Python, C++, Fortran, ...

5 MIDACO 4.0 is designed for up to 1000 variables

6 Suitable for massive parallelization (Multi-Core, HPC & GPGPU)

7 Very user friendly to compile, execute and operate
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MIDACO - Mixed Integer Distributed Ant Colony OptimizatonThe Optimization Software

Some (academic) applications of MIDACO

List of commercial applications available on request.
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MIDACO - Mixed Integer Distributed Ant Colony OptimizatonThe Optimization Software

8 Solution submission over a period of 4.5 Years −→ Very Hard
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Comparison with arGA (Genetic Algorithm)Numerical Results

MIDACO comparison with arGA (Munawar et al.)
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Comparison with arGA (Genetic Algorithm)Numerical Results

Test Setup

1 Language: C/C++ (i7 CPU Q920@2.67GHz)

2 Number of problems: 8 (maximal 17 variables) −→ Toy Problems

3 Number of test runs: 30

4 Starting point: Lower bounds

5 Stopping criteria: Optimum reached within 1% or 100 Seconds

6 Accuracy for constraints: 0.01

7 MIDACO Version: 4.0
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Comparison with arGA (Genetic Algorithm)Numerical Results

Comparison of arGA and MIDACO on 8 toy problems

−→ arGA solves only the first 3 problems robustly

−→ MIDACO solves 100% about 1500 times faster than arGA
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Comparison with arGA (Genetic Algorithm)Numerical Results

Conclusions of Comparison of arGA and MIDACO:

1 The arGA development took around 1 Year
2 The MIDACO development took around 7 Years
3 Both are evolutionary algorithms
4 Both softwares claim to be "sophisticated"

MIDACO is significantly stronger than arGA in regard to robustness,

algorithmic efficiency and overall cpu-time performance.

−→ There is a great variety regarding the quality
of implemenations of evolutionary algorithms
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Comparison with BONMIN, COUENNE & MISQPNumerical Results

MIDACO comparison with MISQP
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Comparison with BONMIN, COUENNE & MISQPMIDACO comparison with MISQP

Test Setup

1 Language: Fortran (i7 CPU Q920@2.67GHz)

2 Number of problems: 100 (max 100 variables, 66 GAMS instances)
3 Number of MISQP test runs: 1
4 Number of MIDACO test runs: 10

5 MISQP Starting point: Pre-defined X0 (mostly GAMS default)
6 MIDACO Starting point: Lower bounds

7 Stopping criteria: Optimum reached within 1% or 300 Seconds

8 Accuracy for constraints: 0.0001

9 MIDACO Version: 3.0
Martin Schlueter Global Optimization of MINLP by Evolutionary Algorithms - APMonitor Webinar 26 Feb 2014 26 / 45



Optimization Problem Evolutionary Algorithms Software Numercial Results MINLP Space Applications References Conclusions

Comparison with BONMIN, COUENNE & MISQPMIDACO comparison with MISQP
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Comparison with BONMIN, COUENNE & MISQPNumerical Results

MIDACO comparison with BONMIN & COUENNE
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Comparison with BONMIN, COUENNE & MISQPMIDACO comparison with BONMIN & COUENNE

Test Setup

1 BONMIN, COUENNE Language: GAMS (Free Gradients?)
2 MIDACO Language: Fortran

3 Number of problems: 66 (max 48 variables, GAMS MINLP’s)
4 Number of BONMIN, COUENNE test runs: 1
5 Number of MIDACO test runs: 10

6 BONMIN, COUENNE Starting point: Pre-defined X0
7 MIDACO Starting point: Lower bounds
8 BONMIN, COUENNE Stopping criteria: Autostop or 300 Seconds
9 MIDACO Stopping criteria: Autostop (Value 50) or 300 Seconds

10 Accuracy for constraints: 0.0001

11 MIDACO Version: 3.0 (all solvers run on i7 CPU Q820@1.73GHz)
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Comparison with BONMIN, COUENNE & MISQPMIDACO comparison with BONMIN & COUENNE

Performance of BONMIN, COUENNE & MIDACO on 66 GAMS MINLP’s

BONMIN: 49 Optimal
COUENNE: 48 Optimal
MIDACO: 62 Optimal

Martin Schlueter Global Optimization of MINLP by Evolutionary Algorithms - APMonitor Webinar 26 Feb 2014 30 / 45



Optimization Problem Evolutionary Algorithms Software Numercial Results MINLP Space Applications References Conclusions

Comparison with BONMIN, COUENNE & MISQPNumerical Results

Conclusions of Comparison with BONMIN, COUENNE & MISQP

1 Test problems were in favor of BONMIN, COUENNE & MISQP
2 Starting points were in favor of BONMIN, COUENNE & MISQP
3 Environment was in favor of BONMIN & COUENNE

MIDACO can outperform BONMIN, COUENNE & MISQP on small to
mid-scale MINLP’s in regard to reaching the global optimum (fast).

MIDACO cpu-runtime performance is competetive.

MIDACO needs much more function evaluation. −→ parallel
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MINLP Space Applications

MINLP Space Applications
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Multi-Stage Launch Vehicle (Boing Delta III)Ascent of Multi-Stage Launch Vehicle (Delta III)

Ascent of Multi-Stage Launch Vehicle

Boing Delta Rocket Family
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Multi-Stage Launch Vehicle (Boing Delta III)Ascent of Multi-Stage Launch Vehicle (Delta III)

MIDACO has been used to optimize the ascent of a multi-stage launch
vehicle. The model was based on a Delta III Space Rocket (Boeing) and
the formulation by V. Rao (GPOPS) was considered. The ascent of the
vehicle is formulated as optimal control problem of a constrained system
of (discretized) ordinary differential equations (ODE’s). The number of
active strap-on boosters in Stage 1 and Stage 2 is considered to be an
integer variable, as well as their manufactor type.

MINLP problem specifications:

1 128 decision variables
2 3 integer variables
3 127 constraints
4 5 equality constraints
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Multi-Stage Launch Vehicle (Boing Delta III)Ascent of Multi-Stage Launch Vehicle (Delta III)

Integer Extension

Formulating the type and number of strap-on boosters as variable.
5 Different Booster types. Up to 9 active booster in first stage.

Overall best configuration: y = {8, 3, 3}, f (x , y) = −7647.5(kg)
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Multi-Stage Launch Vehicle (Boing Delta III)Ascent of Multi-Stage Launch Vehicle (Delta III)
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Multi-Stage Launch Vehicle (Boing Delta III)Ascent of Multi-Stage Launch Vehicle (Delta III)
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Interplanetary Space Mission (NASA Galileo)Interplanetary Space Trajectory (MGA-DSM-MINLP)

Interplanetary Space Trajectory (MGA-DSM-MINLP)

NASA’s Galileo Mission (launched 1989)
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Interplanetary Space Mission (NASA Galileo)Interplanetary Space Trajectory (MGA-DSM-MINLP)

Mission Layout (MGA-DSM)

Possible integer choices for Fly-By Planets:

MINLP: 21 Variables (3 Integer) & 12 Constraints
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Interplanetary Space Mission (NASA Galileo)Interplanetary Space Trajectory (MGA-DSM-MINLP)

Comparison of original Galileo Trajectory and MIDACO Mission1

Galileo MIDACO
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Conclusions

With MIDACO as a representative of evolutionary algorithms, it was shown:

1 Evo. alg. for MINLP is a new field, worth of investigation

2 Evo. alg. can often find the global optimum fast(er)

3 Evo. alg. need many function evaluation −→ Not if parallelized!

4 MIDACO is (probably) the strongest evolutionary MINLP software

5 MIDACO holds 1st (and 2nd) record on hardest ESA benchmark.
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Thank you for your attention!
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