Global Optimization of MINLP by Evolutionary Algorithms

Martin Schlueter

Information Initiative Center Hokkaido University, Japan

APMonitor Webinar (AIChE)

presented by John Hedengren, PRISM Group, BYU

26th Feb 2014

Optimization Problem 00	Evolutionary Algorithms 000 00000	Software 00000	Numercial Results 0000 0000000	MINLP Space Applications 00000 00000	References	Conclusions
Outline						

- MINLP Mixed Integer Nonlinear Programming
- 2 Evolutionary Algorithms
 - ACO Ant Colony Optimization
 - Oracle Penalty Method
- 3 Software
 - MIDACO Mixed Integer Distributed Ant Colony Optimizaton
- 4 Numercial Results
 - Comparison with arGA (Genetic Algorithm)
 - Comparison with BONMIN, COUENNE & MISQP
- MINLP Space Applications
 - Multi-Stage Launch Vehicle (Boing Delta III)
 - Interplanetary Space Mission (NASA Galileo)
 - References

Optimization Problem ●O	Evolutionary Algorithms 000 00000	Software 00000	Numercial Results 0000 0000000	MINLP Space Applications 00000 00000	References	Conclusions
The Opt	imization P	roble	m			

MINLP

Mixed Integer Nonlinear Programming

Martin Schlueter

Global Optimization of MINLP by Evolutionary Algorithms - APMonitor Webinar

26 Feb 2014 3 / 45

The Optimization Problem

General MINLP problem:

• No information on f() or g() available [Blackbox]

 \longrightarrow non-convex, no gradients, stochastic noise

• Integers must be integers (no relaxation)

Optimization Problem 00	Evolutionary Algorithms	Software 00000	Numercial Results 0000 0000000	MINLP Space Applications 00000 00000	References	Conclusions
Evolutio	nary Algorit	hms				

Evolutionary Algorithms

Optimization Problem 00	Evolutionary Algorithms	Software 00000	Numercial Results 0000 0000000	MINLP Space Applications 00000 00000	References	Conclusions
Evolutio	nary Algorit	hms				

Key Features of Evolutionary Algorithms

- Evolution: Random Mutations + Survival of the fittest
- Goal: Find a good solution in reasonable time
- GOOD: [Black-Box] Robust & (Very) Easy to use
- BAD: No guarantee & Many Evaluation

Very popular

"optimization algorithm" "evolutionary algorithm" "numerical algorithm" "deterministic algorithm" gets 1,500,000 Google hits gets 730,000 Google hits gets 390,000 Google hits 180,000 Google hits gest

Optimization Problem 00	Evolutionary Algorithms	Software 00000	Numercial Results 0000 0000000	MINLP Space Applications 00000 00000	References	Conclusions
Evolutio	nary Algorit	hms				

Evolutionary Algorithms for MINLP

- $\textcircled{O} (Very) young field \longrightarrow \mathsf{lot's} of unexplored research opportunities$
- Very few software codes available
- I Hardly any comparison with deterministic MINLP algorithms

ACO - Ant Colony Optimization

(or: Stochastic Gauss Approximation Algorithm)

ACO in a Nutshell

- Terminology: Ant = Solution (x, y) & Fitness = Objective f(x, y)
- **③** Step 1: Randomly choose a number of P Ants \longrightarrow Initial Solutions
- Step 2: Select the number of K Ants with the best fitness
- Step 3: Use Gauss-PDF (on K best Ants) to create P new Ants

Repeat Step 2 & 3

- Solution P stands for Population size, P must be larger than K
- **6** K stands for Kernel size in multi-kernel Gauss PDF's
- Every Step 2 is called a Generation of Ants
- Step 3 can be (massively) parallelized

9 / 45

ACO convergence of multi-kernel PDF's

Global Optimization of MINLP by Evolutionary Algorithms - APMonitor Webinar

Optimization Problem 00	Evolutionary Algorithms	Software 00000	Numercial Results 0000 0000000	MINLP Space Applications 00000 00000	References	Conclusions
Oracle P	enalty Metl	hod				

Oracle Penalty Method

The Oracle Penalty Method in a Nutshell

- $\textcircled{O} Idea: Help the algorithm by providing expert knowledge \longrightarrow Oracle$
- **Example:** Engineer has an application wich currently cost 1000\$

ACO algorithm finds in 1st Generation three solutions:

Solution 1: f(x) = 2000 (feasible) Solution 2: f(x) = 800 (slightly infeasible) Solution 3: f(x) = 100 (very infeasible)

Which solution should be further investigated by ACO ?

Static Penalty: Solution 1 is preferred Oracle Penalty: Solution 2 is preferred

What if the expert <u>has no clue</u> about the (global) optimal f(x) value ?

 \rightarrow Automatic Oracle Update (MIDACO Default)

ACO Run 0 with oracle $\Omega = \infty$ ACO Run 1 with oracle $\Omega = 1100$ ACO Run 2 with oracle $\Omega = 900$ ACO Run 3 with oracle $\Omega = 855$ ACO Run 4 with oracle $\Omega = 850$ ACO Run 5 with oracle $\Omega = 850$ \longrightarrow solution 1100\$ (feasible)

 \rightarrow solution 900\$ (feasible)

 \longrightarrow solution 855\$ (feasible)

 \longrightarrow solution 850\$ (feasible)

 \longrightarrow solution 848\$ (infeasible)

 \longrightarrow solution 849\$ (infeasible)

Overall solution 850\$ found with an oracle $\Omega{=}855$

The savest oracle is slightly above the global optimal f(x)

Careful: Underestimated oracles often lead to infeasible solutions

Martin Schlueter

Mathematical formulation of the penalty (merit) function p(x), depending on the oracle parameter Ω

$$p(x) = \begin{cases} \alpha \cdot |f(x) - \Omega| + (1 - \alpha) \cdot \operatorname{res}(x) &, \text{ if } f(x) > \Omega \text{ or } \operatorname{res}(x) > 0 \\ -|f(x) - \Omega| &, \text{ if } f(x) \le \Omega \text{ and } \operatorname{res}(x) = 0 \end{cases}$$

where α is given by:

$$\alpha \ = \left\{ \begin{array}{ccc} \frac{|f(x)-\Omega|\cdot \frac{6\sqrt{3}-2}{6\sqrt{3}}-\operatorname{res}(x)}{|f(x)-\Omega|-\operatorname{res}(x)} & , \ \text{if} \quad f(x)>\Omega \quad \text{and} \quad \operatorname{res}(x) < \frac{|f(x)-\Omega|}{3} \\ 1-\frac{1}{2\sqrt{\frac{|f(x)-\Omega|}{\operatorname{res}(x)}}} & , \ \text{if} \quad f(x)>\Omega \quad \text{and} \quad \frac{|f(x)-\Omega|}{3} \leq \operatorname{res}(x) \leq |f(x)-\Omega| \\ \frac{1}{2}\sqrt{\frac{|f(x)-\Omega|}{\operatorname{res}(x)}} & , \ \text{if} \quad f(x)>\Omega \quad \text{and} \quad \operatorname{res}(x)>|f(x)-\Omega| \\ 0 & , \ \text{if} \quad f(x)\leq\Omega \end{array} \right.$$

Note that res(x) is the constraint violation, e.g. L_1 -Norm

Graphical illustration of the oracle penalty function for $\Omega=0$)

Global Optimization of MINLP by Evolutionary Algorithms - APMonitor Webinar

		<u>c</u> .				
00	000 00000	•0000	0000 0000000	00000		
Optimization Problem	Evolutionary Algorithms	Software	Numercial Results	MINLP Space Applications	References	Conclusions

The Optimization Software

Mixed Integer Distributed Ant Colony Optimization

Home		News
About	Mixed Integer Distributed Ant Colony Optimization	MIDACO @ SC13 Conference.
Download		New best solution for ESA-GTOP.
More	MIDACO is a solver for general optimization problems. MIDACO can be applied on	MIDACO gets embedded in MDS.
Contact	continuous (NLP), discrete/integer (IP) and mixed integer (MINLP) problems. Problems	日本語サポート、公開しました。
	problems with up to several hundreds to some thousands optimization variables. MIDACO	New parallelization application.
	implements a derivative-free, heuristic algorithm that treats the problem as black-box	Python gateway is available.
	which may contain critical function properties such as non-convexity, discontinuities or stochastic poice. For coultime expensive applications, MIDACO offers an efficient	Parallelization examples available.
	parallelization strategy. The software is available in several programming languages, such	MIDACO version 4.0 is available.
	as Matlab, Python, C/C++ and Fortran.	New homepage is online.
	The development of MIDACO has been sponsored and partially financed by:	
	The development of MIDACO has been sponsored and partially financed by:	

16 / 45

Key features of MIDACO:

- Written entirely from scratch in F77 (7+ Years of Development)
- In sub-solvers or external libraries (e.g. LAPACK or BOOST)
- S Language: Excel/VBA, Matlab, Octave, Python, C++, Fortran, ...
- MIDACO 4.0 is designed for up to 1000 variables
- Suitable for massive parallelization (Multi-Core, HPC & GPGPU)
- **Very user friendly** to compile, execute and operate

00	000 00000	00000	0000	00000		
Optimization Problem	Evolutionary Algorithms	Software	Numercial Results	MINLP Space Applications	References	Conclusions

The Optimization Software

Some (academic) applications of MIDACO

Area	Application	Author(s)
Space	Interplanetary Space Mission (NASA Galileo)	Schlueter et al.
Space	Space Launch Vehicle (Boeing Delta III)	Schlueter et al.
Space	Thermal Insulation System (Heat Shield)	Schlueter et al.
Space	Satellite Constellation	Takano, Marchand
Electr-Eng	Control of Cogeneration Systems	Pandurangan
Robotics	Optimal Camera Placement	Hänel et al.
Climate	Nonlinear Model Predictive Control	Booij, Sijs, Fransman
Finance	Distance-to-Default	Allugundu, Kumar
Finance	Application of Sales Forecasting	Comas
Bio-Tech	Parameter optimization in Bio-Technology	Rehberg et al.
Telecom	Cooperative Wireless Networks	Baidas, MacKenzie
Navy	Structural Optimization of Submarine Hulls	Wong

List of commercial applications available on request.

The Ont	imization S	oftwa	ra			
00	000 00000	00000	0000 0000000	00000		
Optimization Problem	Evolutionary Algorithms	Software	Numercial Results	MINLP Space Applications	References	Conclusions

he Optimization Software

Please visit: http://www.esa.int/gsp/ACT/inf/projects/gtop/gtop.html GLOBAL TRAJECTORY OPTIMISATION PROBLEMS DATABASE

advanced con	cepts te	am and applied maths	h as	esa
			Number of	Time between first
Benchmark Name	Variables	Constraints	submissions	and last submission
Cassini1	6	4	3	6 Month
GTOC1*	8	6	2	13 Month
Messenger (reduced)	18	0	3	11 Month
Messenger (full)*	26	0	8	55 Month
Cassini2*	22	0	7	14 Month
Rosetta	22	0	7	6 Month
Sagas	12	2	1	-

* Best known solution found by MIDACO

19 / 45

						<i>.</i>
00	000 00000	0000●	0000 0000000	00000		
Optimization Problem	Evolutionary Algorithms	Software	Numercial Results	MINLP Space Applications	References	Conclusions

The Optimization Software

MIDACO holds 1st and 2nd record solution on Messenger (Full) [Hardest ESA-GTOP problem]

OBJECTIVE FUNCTION (KM/S)	SOLUTION VECTOR	CREDITS:	DATE:	(Feb 2014)	(Nov 2013)
6.943	N/A	M. Schlueter, J. Fiala, M. Gerdts, University of Birmingham (found by MIDACO solver)	19/06/2009	1.983 km/sec	2.104 km/sec
6.404	N/A	G. Stracquadanio, A. La Ferla, G. Nicosia, University of Catania (Found by SAGES Self-Adaptive- Gaussian Evolutionary Strategy)	17/11/2009	F(x) = 1.983000935817071 x[0] = 2037.777752194555205:	F(x) = 2.104185170661480
6.047	N/A	M. Schlueter, University of Birmingham, M. Gerdts, University of Wuerzburg, M. Munetomo and K. Akama, Hokkaido University, S. Erb and G. Ortega, ESTEC/TEC-ECM (found by MIDACO solver)	30/11/2009	x[1] = 4.036037772605158; x[2] = 0.555461305960588; x[3] = 0.636411860398641; x[4] = 451.456424896320755; x[5] = 224.694309184162989; x[6] = 221.881079005111076; x[7] = 265.245238722573934;	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
4.254	N/A	F. Biscani and D. Izzo, ESTEC Advanced Concepts Team. Found using PaGMO	01/12/2009	x[8] = 358.326887762935030; x[9] = 534.184307028764806; x[10] = 0.599458381121838;	x[8] = 358.048599982140672; x[9] = 444.429427422362778; x[10] = 0.581561467686441;
2.970	CLICK HERE	G. Stracquadanio, Dept of Biomedical Engineering, Johns Hopkins University, A. La Ferla, G. Nicosia, University of Catania (Found by SAGES Self-Adaptive- Gaussian Evolutionary Strategy)	28/02/2011	x(11) = 0.739157714128318; x(12) = 0.719150322680764; x(13) = 0.759748648439657; x(14) = 0.828459261980907; x(15) = 0.902545986525688; x(16) = 1.424881465904589;	$\begin{array}{llllllllllllllllllllllllllllllllllll$
2.113	CLICK HERE	G. Stracquadanio, Dept of Biomedical Engineering, Johns Hopkins University, A. La Ferla, G. Nicosia, University of Catania (Found by SAGES Self-Adaptive- Gaussian Evolutionary Strategy)	10/04/2012	x[17] = 1.10000319782133; x[18] = 1.051121973230887; x[19] = 1.15003195232458; x[20] = 1.55000606119374; x[21] = 2.820044490192342; x[21] = 1.5405673182320;	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
2.104	OLICK HERE	M. Schlueter, M. Munetomo (found by MIDACO solver)	17/10/2013	x[23] = 2.589799685625540; x[24] = 1.756472273431577;	x[23] = 2.622074959673106; x[24] = 1.571933956929996;
1.983	CLICK HERE	M. Schlueter, (found by MIDACO solver)	11/02/2014	x[25] = 1.561537932872780;	x[25] = 1.606318012513329;

8 Solution submission over a period of <u>4.5 Years</u> \rightarrow Very Hard

Optimization Problem 00	Evolutionary Algorithms 000 00000	Software 00000	Numercial Results ●000 ○○○○○○	MINLP Space Applications 00000 00000	References	Conclusions
Numeric	al Results					

MIDACO comparison with arGA (Munawar et al.)

Test Setup

- Language: C/C++ (i7 CPU Q920@2.67GHz)
- **Q** Number of problems: 8 (maximal 17 variables) \rightarrow **Toy Problems**
- O Number of test runs: 30
- Starting point: Lower bounds
- Stopping criteria: Optimum reached within 1% or 100 Seconds
- Accuracy for constraints: 0.01
- MIDACO Version: 4.0

Numeric	al Results					
00	000 00000	00000	0000 0000000	00000		
Optimization Problem	Evolutionary Algorithms	Software	Numercial Results	MINLP Space Applications	References	Conclusions

Comparison of arGA and MIDACO on 8 toy problems

	arGA			N	IDACO)	Speed-Up	
Nr.	Optimal	Eval	Time	Optimal	Eval	Time	Eval	Time
1	30	1976	0.21	30	1803	0.0011	1.09	190
2	30	11301	1.38	30	9593	0.0068	1.17	202
3	30	24253	2.87	30	21047	0.0171	1.15	167
4	21	14381	1.48	30	2521	0.0018	5.70	822
5	25	41626	5.92	30	26367	0.0248	1.57	238
6	17	26092	3.21	30	483	0.0004	54.02	8025
7	16	92646	10.86	30	101797	0.1934	0.91	56
8	16	73581	8.55	30	6255	0.0044	11.76	1943
	77%			100%			9.67	1455

 \rightarrow arGA solves only the first 3 problems robustly

 \rightarrow MIDACO solves 100% about 1500 times faster than arGA

Conclusions of Comparison of arGA and MIDACO:

- O The arGA development took around 1 Year
- The MIDACO development took around 7 Years
- Both are evolutionary algorithms
- Both softwares claim to be "sophisticated"

MIDACO is significantly stronger than arGA in regard to robustness,

algorithmic efficiency and overall cpu-time performance.

Optimization Problem 00	Evolutionary Algorithms 000 00000	Software 00000	Numercial Results	MINLP Space Applications 00000 00000	References	Conclusions
Numeric	al Results					

MIDACO comparison with MISQP

25 / 45

- (i7 CPU Q920@2.67GHz) Language: Fortran
- Number of problems: 100 (max 100 variables, 66 GAMS instances)
- Number of MISQP test runs: 1
- Number of MIDACO test runs: 10
- MISQP Starting point: Pre-defined X_0 (mostly GAMS default)
- MIDACO Starting point: Lower bounds
- Stopping criteria: Optimum reached within 1% or 300 Seconds
- Accuracy for constraints: 0.0001
- MIDACO Version: 3.0

Optimization Problem	Evolutionary Algorithms	Software	Numercial Results	MINLP Space Applications	References	Conclusi
00	000 00000	00000	0000 000000	00000		

MIDACO comparison with MISQP

Algorithm	Optimal	Feasible	$Eval_{mean}$	$Time_{mean}$
MISQP	89	100	500	0.39
MISQP/bmod	71	100	340	0.20
MISQP/fwd	81	100	396	0.11
MISQP/rst0	69	99	241	0.14
MISQPOA	91	100	1,093	0.65
MISQPN	74	98	1,139	0.17
MINLPB4/bin	92	100	1,787	30.91
MINLPB4/int	88	94	218,881	4.11

Maximal 92 Optimal (30.91 Sec)

Ì	Seed	Optimal	Feasible	$Eval_{mean}$	$Time_{mean}$	
	0	96	99	$1,\!656,\!979$	4.54]
	1	96	99	3,223,015	9.01	
	2	96	98	$1,\!673,\!873$	4.20	
~	3	97	98	2,235,463	6.53	Maximal
U U	4	96	98	2,054,099	6.08	97 Optimal
ΡA	5	97	99	$1,\!485,\!525$	4.82	(6.53 Sec)
M	6	95	99	$1,\!641,\!648$	4.07	
	7	97	99	1,724,627	5.90	l lex
	8	95	99	1,120,204	2.77	EX
	9	96	98	2,313,829	7.93	

MISQP

Optimization Problem OO	Evolutionary Algorithms 000 00000	Software 00000	Numercial Results ○○○○ ○○○●○○○	MINLP Space Applications 00000 00000	References	Conclusions
Numeric	al Results					

MIDACO comparison with BONMIN & COUENNE

Optimization Problem 00	Evolutionary Algorithms 000 00000	Software 00000	Numercial Results ○○○○ ○○○○●○○	MINLP Space Applications	References	Conclusions
MIDACO	comparisc	n with	1 BONMI	N & COUE	NNE	

Test Setup

- BONMIN, COUENNE Language: GAMS
- (Free Gradients?)

- MIDACO Language: Fortran
- Sumber of problems: 66 (max 48 variables, GAMS MINLP's)
- Number of BONMIN, COUENNE test runs: 1
- Solution Number of MIDACO test runs: 10
- BONMIN, COUENNE Starting point: Pre-defined X_0
- MIDACO Starting point: Lower bounds
- BONMIN, COUENNE Stopping criteria: Autostop or 300 Seconds
- MIDACO Stopping criteria: Autostop (Value 50) or 300 Seconds
- Accuracy for constraints: 0.0001
- MIDACO Version: 3.0 (all solvers run on i7 CPU Q820@1.73GHz)

Optimization Problem 00	Evolutionary Algorithms 000 00000	Software 00000	Numercial Results 0000 0000000	MINLP Space Applications	References	Conclusions
MIDACO	compariso	n with	BONM	N & COUE	NNE	

Performance of BONMIN, COUENNE & MIDACO on 66 GAMS MINLP's

Solver	Optimal	Feasible	$Time_{aver}$	$Time_{total}$
BONMIN	49	64	17.99	1187.62
COUENNE	48	64	40.36	2664.31
MIDACO	$51\sim 62$	$64 \sim 65$	31.41	2072.73

BONMIN:	49 Optimal
COUENNE:	48 Optimal
MIDACO:	62 Optimal

Optimization Problem 00	Evolutionary Algorithms 000 00000	Software 00000	Numercial Results ○○○○ ○○○○○●	MINLP Space Applications 00000 00000	References	Conclusions
Numerica	al Results					

Conclusions of Comparison with BONMIN, COUENNE & MISQP

- Test problems were in favor of BONMIN, COUENNE & MISQP
- Starting points were in favor of BONMIN, COUENNE & MISQP
- Servironment was in favor of BONMIN & COUENNE

MIDACO can **outperform** BONMIN, COUENNE & MISQP on small to mid-scale MINLP's in regard to reaching the **global optimum** (fast).

MIDACO cpu-runtime performance is competetive.

MIDACO needs much more function <u>evaluation</u>. \rightarrow parallel

Optimization Problem 00	Evolutionary Algorithms 000 00000	Software 00000	Numercial Results 0000 0000000	MINLP Space Applications	References	Conclusions
MINLP S	Space Appli	catior	าร			

MINLP Space Applications

Ascent of Multi-Stage Launch Vehicle

Boing Delta Rocket Family

MIDACO has been used to optimize the ascent of a multi-stage launch vehicle. The model was based on a Delta III Space Rocket (Boeing) and the formulation by V. Rao (GPOPS) was considered. The ascent of the vehicle is formulated as optimal control problem of a constrained system of (discretized) ordinary differential equations (ODE's). The number of active strap-on boosters in Stage 1 and Stage 2 is considered to be an integer variable, as well as their manufactor type.

MINLP problem specifications:

- 128 decision variables
- 3 integer variables
- 127 constraints
- 5 equality constraints

34 / 45

Optimization Problem 00	Evolutionary Algorithms 000 00000	Software 00000	Numercial Results 0000 0000000	MINLP Space Applications	References	Conclusions
Ascent o	of Multi-Sta	ge La	unch Veł	nicle (Delta I	II)	

Integer Extension

Formulating the type and number of strap-on boosters as variable. 5 Different Booster types. Up to 9 active booster in first stage.

Bor	stor.(onfig		Bog	stor.	Config		Bor	stor.(onfig		Boo	stor.(onfig	
B.	T.	T.	Best known $f(x, y)$	B.	T.	T-	Best known $f(x, y)$	B.	T.	T ₋	Best known $f(x, y)$	B.	T.	T.	Best known $f(x, y)$
D	11	12	Dest known $f(x,y)$	101	*1	12	Dest known $f(x,y)$	101	41	12	Dest known $f(x,y)$	D_1	11	12	Desc known $f(x,y)$
6	1	1	-6685.71	8	1	1	-6848.21	7	1	1	-6789.90	9	1	-	-6855.30
6	1	2	-6808.53	8	1	2	-6900.99	7	1	2	-6883.25	9	2	-	-7324.23
6	1	3	-6884.45	8	1	3	-6935.36	7	1	3	-6942.60	9	3	-	-7599.88
6	1	4	-6955.92	8	1	4	-6969.11	7	1	4	-6999.74				
6	1	5	-7055.32	8	1	5	-7018.56	7	1	5	-7081.49				
6	2	1	-7075.93	8	2	1	-7297.53	7	2	1	-7213.85				
6	2	2	-7195.10	8	2	2	-7228.32	7	2	2	-7303.58				
6	2	3	-7269.14	8	2	3	-7381.77	7	2	3	-7360.66				
6	2	4	-7339.15	8	2	4	-7414.42	7	2	4	-7415.64				
6	3	1	-7315.13	8	2	5	-7321.22	7	2	5	-7494.50				
6	3	2	-7431.81	8	3	1	-7565.08	7	3	1	-7271.36				
6	3	3	-7504.48	8	3	2	-7614.97	7	3	2	-7556.82				
6	4	1	-7539.17	8	3	3	-7647.50	7	3	3	-7612.70				

Table 5: Enumeration over all (feasible	booster configurations	with	B_1	\geq	6
---------------------------------	----------	------------------------	------	-------	--------	---

Overall best configuration: $y = \{8, 3, 3\}, f(x, y) = -7647.5(kg)$

Optimization	Problem
00	

Evolutionary Algorithms

Software 00000

Numercial Results

MINLP Space Applications

References

Conclusions

Ascent of Multi-Stage Launch Vehicle (Delta III)

	Table	7:30) runs b	y MIDACO	(max time	e = 7200) + SQP (1)	nax iter=10	00)	
	Boo	ster-(Config.		SQP			MIDACO		
Run	B_1	T_1	T_2	f(x,y)	Eval	Time	f(x, y)	Eval	Time	
1	9	- 3	1	-7599.88	357908	317.7	-7419.65	3455790	7200.0	
2	9	3	1	-7599.88	353114	315.1	-7449.22	3450447	7200.0	
3	8	3	3	-7647.50	363366	321.1	-7502.77	3443609	7200.0	<- Optimal Solution reached
4	9	3	1	-7599.88	267022	236.8	-7419.91	3449060	7200.0	
5	9	3	5	-7599.88	309848	274.6	-7418.63	3460976	7200.0	
6	9	3	1	-7599.88	173384	153.8	-7436.00	3472466	7200.0	
7	9	3	1	-7599.88	346444	307.3	-7555.53	3456612	7200.0	
8	9	3	4	-7599.88	265638	234.8	-7369.10	3457577	7200.0	
9	7	3	3	-7567.75	6713	6.4	-7565.33	3445493	7200.0	
10	9	3	4	-7599.88	284148	254.1	-7524.85	3445318	7200.0	
11	8	3	3	-7524.57	7379	7.1	-7519.89	3447985	7200.0	
12	8	3	3	-7647.50	354988	313.6	-7481.90	3459946	7200.0	<- Optimal Solution reached
13	9	3	1	-7599.88	270324	240.1	-7444.49	3453002	7200.0	
14	8	3	3	-7647.50	363938	322.9	-7479.16	3451839	7200.0	<- Optimal Solution reached
15	9	3	5	-7599.88	266138	235.9	-7500.50	3464034	7200.0	
16	9	3	5	-7599.88	301198	266.8	-7519.93	3481049	7200.0	
17	9	3	3	-7599.88	344342	307.8	-7456.35	3450507	7200.0	
18	9	3	1	-7599.88	273766	242.3	-7528.82	3454741	7200.0	
19	9	3	1	-7599.88	298972	267.0	-7527.04	3458943	7200.0	
20	9	3	4	-7599.88	324916	290.1	-7431.08	3468826	7200.0	
21	9	3	5	-7599.88	355510	317.4	-7498.23	3487475	7200.0	
22	9	3	5	-7599.88	341446	322.4	-7430.29	3042720	7200.0	
23	8	3	3	-7647.43	309588	370.1	-7536.62	2879186	7200.0	<- Optimal Solution reached
24	9	3	5	-7599.88	349166	425.9	-7460.48	2435917	7200.0	
25	8	3	3	-7513.12	7360	9.2	-7505.67	2568537	7200.0	
26	6	4	1	-7539.17	361342	332.9	-7434.57	2871096	7200.0	
27	9	3	5	-7599.88	313390	313.4	-7348.84	3060132	7200.0	
28	9	3	3	-7599.88	263188	347.4	-7475.90	3150988	7200.0	
29	8	3	3	-7647.50	355292	321.1	-7470.97	2873982	7200.0	<- Optimal Solution reached
30	8	3	3	-7647.50	365252	327.5	-7491.21	3336049	7200.0	<- Optimal Solution reached

36 / 45

Ascent of Multi-Stage Launch Vehicle (Delta III)

Global Optimization of MINLP by Evolutionary Algorithms - APMonitor Webinar

NASA's Galileo Mission (launched 1989)

Possible integer choices for Fly-By Planets:

Number	Planet
1	Mercury
2	Venus
3	Earth
4	Mars
5	Jupiter
6	Saturn
7	Uranus
8	Neptune
9	Pluto

MINLP: 21 Variables (3 Integer) & 12 Constraints

Optimization Problem

Evolutionary Algorithms

Software 00000

Numercial Results

MINLP Space Applications

References

Conclusions

Interplanetary Space Trajectory (MGA-DSM-MINLP)

Table 9: Optimization variables x	(continuous)	and y	(integer)	with bounds
-------------------------------------	--------------	---------	-----------	-------------

Variable	Description	Lower Bound	Upper Bound
continuous			
x_1	Launch Date	0 (01 Jan. 1989)	730 (31 Dec. 1990)
x_2	Duration of Arc 1	0 (days)	200 (days)
x_3	Duration of Arc 2	0 (days)	400 (days)
x_4	Duration of Arc 3	0 (days)	800 (days)
x_5	Duration of Arc 4	0 (days)	100 (days)
x_6	Duration of Arc 5	0 (days)	1200 (days)
x_7	Thrust Escape $(X \text{ direction})$	-6000.0 (m/sec)	6000.0 (m/sec)
x_8	Thrust Escape (Y direction)	-6000.0 (m/sec)	6000.0 (m/sec)
x_9	Thrust Escape (Z direction)	-3000.0 (m/sec)	3000.0 (m/sec)
x_{10}	Thrust Capture $(X \text{ direction})$	-6000.0 (m/sec)	6000.0 (m/sec)
x_{11}	Thrust Capture (Y direction)	-6000.0 (m/sec)	6000.0 (m/sec)
x_{12}	Thrust Capture (Z direction)	-3000.0 (m/sec)	3000.0 (m/sec)
x_{13}	Thrust DSM $(X \text{ direction})$	-1000.0 (m/sec)	1000.0 (m/sec)
x_{14}	Thrust DSM $(Y \text{ direction})$	-1000.0 (m/sec)	1000.0 (m/sec)
x_{15}	Thrust DSM (Z direction)	-500.0 (m/sec)	500.0 (m/sec)
x_{16}	Altitude Flyby 1	$0.00 \ (\sim Alt_{min})$	$1.00 \ (\sim Alt_{max})$
x_{17}	Altitude Flyby 2	$0.00 \ (\sim Alt_{min})$	$1.00 \ (\sim Alt_{max})$
x_{18}	Altitude Flyby 3	$0.00 \ (\sim Alt_{min})$	$1.00 (\sim Alt_{max})$
integer			
y_1	Planet Flyby 1	1 (Mercury)	9 (Pluto)
y_2	Planet Flyby 2	1 (Mercury)	9 (Pluto)
y_3	Planet Flyby 3	1 (Mercury)	9 (Pluto)

Martin Schlueter

Global Optimization of MINLP by Evolutionary Algorithms - APMonitor Webinar

26 Feb 2014 40 / 45

Optimization Problem	Evolutionary Algorithms	Software	Numercial Results	MINLP Space Applications	References	Conclusion
00	000 00000	00000	0000 0000000	00000 00000		

Interplanetary Space Trajectory (MGA-DSM-MINLP)

Table 13: 10 test runs by MIDACO on mission model with 3% sphere of action

Run	Launch	ΔV	Duration	FlyBy 1	FlyBy 2	FlyBy 3
1	6 Nov. 1989	2553	5.88	Venus	Earth	Earth
2	30 Nov. 1989	3310	4.83	Venus	Earth	Earth
3	30 Nov. 1989	3218	4.88	Venus	Earth	Earth
4	10 Jul. 1989	3390	3.97	Venus	Earth	Mars
5	20 Nov. 1989	2890	4.77	Venus	Earth	Earth
6	23 May 1989	2759	5.35	Earth	Venus	Earth
7	21 Mar 1989	infeasible	4.85	Earth	Earth	Mars
8	13 Apr. 1989	3290	4.54	Earth	Venus	Earth
9	30 Nov. 1989	3289	4.79	Venus	Earth	Earth
10	16 Sep. 1989	2684	6.10	Venus	Earth	Earth

Table 14: Comparison between original Galileo and MIDACO Missions

	Galileo Mission	Mission1 refine 0.5 %	Mission4 refine 0.5 %
Launch	18 Oct. 1989	8 Nov. 1989	6 Jul. 1989
Duration	6.14 Years	6.14 Years	4.15 Years
ΔV	unknown	3,350 m/sec	5,177 m/sec
1st Flyby			
Planet	Venus	Venus	Venus
Date	10 Feb. 1990	23 Feb. 1990	21 Jan. 1990
Altitude	16,000km	28,901 km	3,013km
2nd Flyby			
Planet	Earth	Earth	Earth
Date	8 Dec. 1990	5 Dec. 1990	4 Sep. 1990
Altitude	960 km	473,191km	1,754km
3rd Flyby			
Planet	Earth	Earth	Mars
Date	8 Dec. 1992	4 Dec. 1992	31 Dec. 1990
Altitude	303 km	300km	39km

Comparison of original Galileo Trajectory and MIDACO Mission1

1.1.						
00	000 00000	00000	0000 0000000	00000		
Optimization Problem	Evolutionary Algorithms	Software	Numercial Results	MINLP Space Applications	References	Conclusions

Literature References (Preprints freely available @ MIDACO Homepage)

- <u>Schlueter M.</u>, Gerdts M., Rueckmann J.J.:
 A Numerical Study of MIDACO on 100 MINLP Benchmarks. Optimization (Taylor & Francis), Vol 61, Issue 7, Pages 873-900 (2012)
- Schlueter M., Gerdts M.: The Oracle Penalty Method. Journal of Global Optimization (Springer), Vol. 47, Issue 2, Pages 293-325 (2010)
- Schlueter M., Erb S., Gerdts M., Kemble S., Rueckmann J.J.: MIDACO on MINLP Space Applications. Advances in Space Research (Elsevier), Vol 51, Issue 7, Pages 1116-1131 (2013)
- Schlueter M., Munetomo M.: Parallelization Strategies for Evolutionary Algorithms for MINLP. Proc. Cong. Evolutionary Computation (IEEE-CEC), Pages 635-641 (2013)
- Schlueter M.: MIDACO Software Performance on Interplanetary Trajectory Benchmarks. Advances in Space Research (Elsevier), *submitted* (2014)

43 / 45

Optimization Problem	Evolutionary Algorithms 000 00000	Software 00000	Numercial Results 0000 0000000	MINLP Space Applications	References	Conclusions
Conclusi	ons					

With MIDACO as a representative of evolutionary algorithms, it was shown:

- Evo. alg. for MINLP is a new field, worth of investigation
- Section 2 Evo. alg. can often find the global optimum fast(er)
- Section 2. Section
- MIDACO is (probably) the strongest evolutionary MINLP software
- MIDACO holds 1st (and 2nd) record on hardest ESA benchmark.

44 / 45

Optimization Problem 00	Evolutionary Algorithms 000 00000	Software 00000	Numercial Results 0000 0000000	MINLP Space Applications 00000 00000	References	Conclusions

Thank you for your attention!

Special Thanks:

John Hedengren, APMonitor & AIChE Cast Division

Martin Schlueter

Global Optimization of MINLP by Evolutionary Algorithms - APMonitor Webinar 26 Fo

26 Feb 2014 45 / 45