
CEC2013 - Congress on Evolutionary Computation, IEEE

Parallelization Strategies for Evolutionary
Algorithms for MINLP

Martin Schlueter
Information Initiative Center
Hokkaido University Sapporo

Sapporo 060-0811, Japan
Email: schlueter@midaco-solver.com

Masaharu Munetomo
Information Initiative Center
Hokkaido University Sapporo

Sapporo 060-0811, Japan
Email: munetomo@iic.hokudai.ac.jp

Abstract— Two different parallelization strategies for evo-
lutionary algorithms for mixed integer nonlinear programming
(MINLP) are discussed and numerically compared in this contri-
bution. The first strategy is to parallelize some internal parts of
the evolutionary algorithm. The second strategy is to parallelize
the MINLP function calls outside and independently of the
evolutionary algorithm. The first strategy is represented here by
a genetic algorithm (arGA) for numerical testing. The second
strategy is represented by an ant colony optimization algorithm
(MIDACO) for numerical testing. It can be shown that the first
parallelization strategy represented by arGA is inferior to the
serial version of MIDACO, even though if massive parallelization
via GPGPU is used. In contrast to this, theoretical and practial
tests demonstrate that the parallelization strategy of MIDACO is
promising for cpu-time expensive MINLP problems, which often
arise in real world applications.

Keywords: Mixed Integer Nonlinear Programming (MINLP),
Ant Colony Optimization (ACO), Genetic Algorithm (GA),
MIDACO, Parallelization, GPGPU, Cloud Computing

I. INTRODUCTION

Mixed integer nonlinear programming (MINLP) is a re-
search field of growing interest in the evolutionary computing
community (see for example Liang et al. [9], Wasanapradit
et al. [17], Young et al. [19], Yiqing et al. [18] or Deep et
al. [3] ). A mathematical formulation of a general MINLP
is given in (1), where f(x, y) denotes the objective function
to be minimized. In (1), the equality constraints are given
by g1,...,me(x, y) and the inequality constraints are given by
gme+1,...,m(x, y). The vector x contains the continuous deci-
sion variables and the vector y contains the discrete decision
variables. Furthermore, some box constraints as xl, yl (lower
bounds) and xu, yu (upper bounds) for the decision variables
x and y are considered in (1).

Minimize f(x, y) (x ∈ Rncon , y ∈ Znint)

subject to: gi(x, y) = 0, i = 1, ...,me ∈ N
gi(x, y) ≥ 0, i = me + 1, ...,m ∈ N
xl ≤ x ≤ xu (xl, xu ∈ Rncon)

yl ≤ y ≤ yu (yl, yu ∈ Nnint)

(1)

Parallel computing is also a field of rapidly growing
interest in the optimization community. With the nowadays

widely availability of many core processors, graphic cards
with general purpose computing capabilities, computer
clusters or cloud computing resources, the question of
efficient parallelization strategies for optimization algorithms
arises.

The motivation behind this work is to combine the topics
of MINLP and parallelization in the context of evolutionary
computing. In this contribution two different parallelization
strategies for evolutionary algorithms on MINLP should be
discussed and evaluated. This contribution does not aim on
giving a comprehensive overview on such wide topic, instead
it should give some first indication of what can be a promis-
ing parallelization strategy for an evolutionary algorithms
on MINLP and what not. It appears that the parallelization
approaches for evolutionary algorithms (EA) can basically
be classified into three strategies: (A) Parallelization of the
internal parts of the EA, (B) Executing several instances of
EA’s in parallel and (C) Executing several problem evaluation
in parallel.

As the topic of evolutionary algorithms for MINLP is still a
young field, the currently available contributions of parallelized
evolutionary algorithms for MINLP remains very small. To
the best knowledge of the authors, there are currently two
reports about genetic algorithms (Powell and Hollingsworth
[10] and Munawar [11]) and one about ant colony optimization
(Schlueter [16] ) which evaluate the performance of EA’s for
MINLP in parallel mode.

In this contribution the (massively) parallelized GA named
“arGA” from Munawar [11] is compared with results obtained
by MIDACO by Schlueter [16]. The code arGA implements
the parallelization strategy A, while MIDACO implements the
parallelization strategy C. From the results presented here it
can be deduced that strategy A is not a promising option,
neither for computational cheap MINLP benchmark functions
nor for cpu-time intensive MINLP real world applications.
In contrast to this, theoretical numerical results show that
MIDACO’s strategy C can be promising if the MINLP is
cpu-time expensive. In order to demonstrate this claim, a
parallelization case study of MIDACO for a real world MINLP
from the area of chemical engineering is presented in addition.

This paper is structured as follows: In Section II, a compari-
son between the serial and parallelized version of arGA and the
serial version of MIDACO is given for a set of eight MINLP



benchmark problems. In Section III, MIDACO’s parallelization
strategy is evaluated theoretically on the same set of eight
MINLP benchmarks. In Section IV, a parallelization case
study of MIDACO on a cpu-time intensive real world MINLP
application is presented in order to demonstrate its practical
usefulness of this approach. Finally some conclusions are
drawn.

II. COMPARISON OF PARALLELIZED GA WITH SERIAL
MIDACO

In this section a comparison between a Genetic Algorithm
(GA) and an Ant Colony Optimization (ACO) algorithm for
MINLP is given. The considered GA is namely the im-
plementation arGA (adaptive resolution Genetic Algorithm)
by Munawar [11] and the considered ACO is namely MI-
DACO (Mixed Integer Distributed Ant Colony Optimization)
by Schlueter [16]. Both algorithms claim to be advanced ones
and implement the oracle penalty method (see Schlueter and
Gerdts [14]) for handling constraints. Both implementations
are capable of parallelization, but differ in their concrete
parallelization strategy. The arGA implementation allows the
parallelization of specific GA internal operators. This means
the parallelization strategy of arGA aims on reducing the
algorithmic overhead of the GA. In contrast to this, MIDACO
allows the parallel execution of the problem functions (ob-
jective and constraint functions), but does not perform any
parallelization of the internal parts of the ACO. This means,
the parallelization strategy of MIDACO aims on reducing the
calculation times required by the MINLP application, which
is often (very) time consuming for real world problems. In
summary it can be said, that arGA and MIDACO are both
evolutionary algorithms which feature fundamentally different
parallelization approaches.

In Munawar [11] results by arGA for a set of eight
(small) MINLP benchmark problems is presented. A detailed
description of the eight benchmark problems with all relevant
data can be found in the Appendix. Note that this selection
of benchmark problems is based on the previous work by
Munawar [11] and in order to compare the algorithms we
are bound to this set here. A comprehensive evaluation of
MIDACO on 100 MINLP benchmark problems is alternatively
available in Schlueter et al. [15]. In Munawar [11] results are
reported for the serial execution of arGA as well as for different
parallelization strategies. The parallelization strategy with the
best results was reported for GPGPU (using single precision).
Details on the parallelization approach by arGA can be found
in Munawar [11]. Therefore only two cases for arGA are
considered here: the serial case and the GPGPU-parallelization
case. Firstly, the results of serial arGA are compared with
serial MIDACO in Table I. Secondly, the results of GPGPU
parallelized arGA are compared with serial MIDACO in Table
II. In Table I and Table II the number of global optimal
solutions out of 30 test runs for each benchmark problem
is reported together with the average number of function
evaluation and the average cpu-time in seconds. Additionally
the speedup factor for MIDACO in contrast to arGA is reported
regarding the average number of function evaluation and the
average time. All test runs (for both arGA and MIDACO)
were performed on a computer with Intel Core i7 CPU
Q920@2.67GHz. Note, that the identical physical computer

was used for both algorithms. Therefore the cpu-run-times are
directly comparable.

TABLE I: Comparison of serial arGA with serial MIDACO

arGA MIDACO Speed-Up
Nr. Optimal Eval Time Optimal Eval Time Eval Time
1 30 1976 0.21 30 1803 0.0011 1.09 190
2 30 11301 1.38 30 9593 0.0068 1.17 202
3 30 24253 2.87 30 21047 0.0171 1.15 167
4 21 14381 1.48 30 2521 0.0018 5.70 822
5 25 41626 5.92 30 26367 0.0248 1.57 238
6 17 26092 3.21 30 483 0.0004 54.02 8025
7 16 92646 10.86 30 101797 0.1934 0.91 56
8 16 73581 8.55 30 6255 0.0044 11.76 1943

77% 100% 9.67 1455

TABLE II: Comparison of GPGPU parallelized arGA with
serial MIDACO

arGA MIDACO Speed-Up
Nr. Optimal Eval Time Optimal Eval Time Eval Time
1 30 2053 0.072 30 1803 0.0011 1.13 65
2 30 11203 0.097 30 9593 0.0068 1.17 14
3 30 24848 0.143 30 21047 0.0171 1.18 8
4 22 14401 0.080 30 2521 0.0018 5.71 44
5 25 41965 0.226 30 26367 0.0248 1.59 9
6 17 26040 0.151 30 483 0.0004 53.91 377
7 15 92698 0.370 30 101797 0.1934 0.91 2
8 19 74058 0.306 30 6255 0.0044 11.84 69

78% 100% 9.68 73

When comparing the results of serial arGA with serial
MIDACO a very large performance gab can be observed in
Table I. While arGA struggles to solve on 5 out of 8 problems
to the global optimal solution, MIDACO robustly solves each
problem to the global solution in every test run an does
so about 1500 times faster than arGA. When comparing the
number of average function evaluation however, the picture is
more moderate. On average the MIDACO algorithm is around
10 times more efficient than arGA. Only in case of problem
7, arGA requires slightly less function evaluation on average,
whereas it is to note that arGA does solve this problem instance
only in about 50% of the test runs, while MIDACO has a
success rate of 100%.

When comparing the results of GPGPU parallelized arGA
with serial MIDACO the cpu-time performance gap is not that
large anymore. Nevertheless, MIDACO is 73 times faster on
average. Regarding the success rate and average number of
function evaluation there is no significant change to be noticed.
This means, that despite the effort of reducing the algorithmic
overhead of arGA by (massive) parallelization over a GPGPU,
the overhead and algorithmic performance of serial MIDACO
still outperforms arGA.

III. PARALLELIZATION STRATEGY OF MIDACO

In this section the parallelization strategy of MIDACO
should be investigated on the same set of MINLP prob-



lems presented in Section II. The parallelization strategy of
MIDACO aims on executing several problem function calls
in parallel, but does not involve the parallelization of any
internal parts of the ACO algorithm. The reason for this
strategy is simple: Real World problems are (often) cpu-time
expensive. As evolutionary algorithms do normally require a
lot (often millions) of function evaluations, such algorithms are
not practical for any application that is cpu-time expensive.
Even if a significant speedup could be gained by reducing
the algorithmic overhead of the evolutionary algorithm (see
arGA in Table I and Table II), this does in no way affect
the number of serial processed problem function evaluation.
Therefore: For any cpu-time intensive application, the number
of serial processed function evaluation dominates the overall
cpu-time requirement. This diagnose is the motivation behind
the parallelization strategy of MIDACO.

In order to allow the application of an evolutionary algo-
rithm like MIDACO on a cpu-time expensive problem (where
many function evaluation are required) executing several so-
lution candidates in parallel is a promising strategy. Table III
displays the average number serial processed blocks of iterates
for each problem. A block denotes here the amount of parallel
submitted iterates to MIDACO in one reverse communication
loop (see Schlueter et al. [15]). The size of each block is
determined by the parallelization factor L, which is simply
the number of individual iterates per block. Like in Section II
30 test runs have been performed for every test problem. Note
that in Table III the column referring to L = 1 represents
the not-parallelized case, thus every block contains only one
iterate. The results reported for this column are the same as the
average function evaluation reported for MIDACO in Table I
and Table II.

TABLE III: Average number of blocks, depending on L

Problem L=1 L=2 L=10 L=100 L=1000
1 1803 1454 160 82 2
2 9593 5475 1827 519 124
3 21047 13146 4866 694 4
4 2521 1615 399 68 4
5 26367 11258 3994 578 159
6 483 372 85 17 2
7 101797 79282 16901 3566 1956
8 6255 3160 811 122 63

The results displayed in Table III show a dramatic reduction
of serial processed blocks with an increasing parallelization
factor L. While for the lowest possible parallelization factor
(L = 2), a moderate reduction of about 50% can be observed
for most problems, the highest investigated factor (L = 1000)
reduces the number of average blocks even to 2 for two out
of the eight problem instances.

From Table III we conclude that the parallelization strategy
of MIDACO does effectively reduce the number of blocks for
every problem instance. Therefore we see this parallelization
strategy as promising for real world applications, where a
single function evaluation is cpu-time expensive and therefore
the number of serial executed evaluations is the overall time
dominating factor.

IV. REAL WORLD CASE STUDY WITH PARALLELIZED
MIDACO

While in Section III the parallelization strategy of MI-
DACO was explained and theoretically investigated on a set
of eight MINLP benchmarks, here it should be put to the
practical test. In this section a real world application from the
area of chemical engineering is considered. Namely this is the
Tennessee Eastman Process (TEP), which models a complex
chemical reaction that is described in Schlueter et al. [13].
Figure 1 displays the TEP flow sheet. The TEP model consist
of 171 differential algebraic equations (141 algebraic equation
and 30 ordinary differential equations) and was modeled in
Matlab and Simulink.

Fig. 1. Tennessee Eastman Process (TEP) plant layout

The objective of the TEP application is to minimize the
annual operating cost of the chemical plant. One single model
evaluation takes between 0.1 to 2.0 Seconds on an Intel I7
CPU Q820@1.73GHz. Therefore this application can be seen
as a cpu-time intensive application, where a parallelization of
the model evaluations might be useful.

The optimization problem that results from the TEP model
is classified as MINLP and does consist of 36 continuous and
7 binary variables. Furthermore the problem is constrained due
to 10 inequality and 1 equality constraint. Detailed information
on this application and the MINLP optimization problem
formulation can be found in Schlueter et al. [13]. The best
known solution reported for the TEP model is F (x) = 84.19.

Two series of 10 test runs each, are considered here for the
TEP application. In the first series, MIDACO is executed in
serial mode, while in the second series, MIDACO is executed
in parallel mode. As the above specified cpu is a quad-core
processor, a parallelization factor of L = 4 is used. In both test
series, every individual test run was either stopped if 10000
function evaluation were performed, 10000 seconds of cpu-
time budget were reached or a feasible solution lower or equal
85.0 was found.

Table IV displays the results for each individual run in
serial (L = 1) or parallel (L = 4) mode. In Table IV the best
reached feasible objective function value is reported together
with the corresponding cpu-time and number of function
evaluation.



TABLE IV: Individual results of serial and parallel testruns on
the TEP

Serial (L=1) Parallel (L=4)
Testrun f(x) Time Eval f(x) Time Eval

1 84.9958 4320.83 5775 84.9620 1079.62 2916
2 98.9034 5469.58 7388 150.6043 3036.67 9056
3 149.8823 4480.24 7807 84.8861 2103.57 3988
4 84.9862 2455.59 3134 84.9018 1344.05 2288
5 84.9160 2541.74 3200 84.9041 1577.60 3316
6 84.9645 5518.65 4894 84.9069 1437.10 2608
7 84.9488 3736.28 3999 98.8107 3276.52 9812
8 84.9541 2043.18 2367 84.9133 1240.75 3124
9 86.9889 6623.58 9974 84.9830 2046.83 3804

10 150.4769 4738.92 7780 149.6352 2278.85 7408

From Table IV it can be seen that MIDACO reaches an
objective function value lower or equal 85.0 in 6 out of 10
cases in serial mode. In parallel mode, MIDACO reaches an
objective function value lower or equal 85.0 in 7 out of 10
cases. When comparing the average time over the successful
runs in the serial and parallel case, a speed up factor of
around 2.2 times can be observed. Taken into account that
a relatively low parallelization factor of L = 4 was used,
this result is coherent with the theoretical observations from
Table III. While such a speed up factor does not appear to be
impressive from the theoretical point of view, for a practical
user it means he/she can save up to 30 minutes out of 1
hour on a personal computer (with quad-core cpu) by running
MIDACO in parallel model.

V. CONCLUSIONS

An investigation of two different parallelization strategies
for evolutionary algorithms for MINLP were presented. Those
strategies were implemented in arGA [11] and MIDACO [16]
and tested on a set of eight MINLP benchmarks. It could
be shown, that a parallelization of the internal parts of the
genetic algorithm arGA was not succeeding the performance
of the serial implemented Ant Colony Optimization algorithm
MIDACO, even though a massive parallelization by GPGPU
was considered (see Table II). In contrast to this, the par-
allelization of the problem functions calls was theoretically
investigated and practically verified on a real world applica-
tion from chemical engineering. It could be shown that this
parallelization strategy can theoretically provide a dramatic
reduction of serial processed function calls (see Table III)
if a sufficient large parallelization factor is available. The
results on the real world application demonstrated the practical
usefulness of this approach, where a regular calculation time
of about 1 Hour could be reduced to 30 Minutes by applying
a (small) parallelization factor of 4 on regular quad-core cpu
computer.

REFERENCES

[1] Babu, B., Angira, A.: A differential evolution approach for global
optimisation of minlp problems. In: Proceedings of the Fourth Asia
Pacific Conference on Simulated Evolution and Learning (SEAL 2002),
Singapore, pp. 880–884 (2002)

[2] Cardoso, M.F., Salcedo, R.L., Azevedo, S.F., Barbosa, D.: A simulated
annealing approach to the solution of MINLP problems. Computers
Chem. Engng. 12(21), pp. 1349–1364 (1997)

[3] Deep, K., Krishna, P.S., Kansal, M.L., Mohan, C.: A real coded genetic
algorithm for solving integer and mixed integer optimization problems.
Appl. Math. Comput., 212(2), pp. 505–518 (2009)

[4] Duran, M. A., Grossmann, I. E.: An Outer-Approximation Algorithm
for a Class of Mixed-Integer Nonlinear Programs. Math. Program. 36,
pp. 307-339 (1986)

[5] Floudas, C.A., Aggarwal, A., Ciric, A.R.: Global optimum search for
nonconvex NLP and MINLP problems. Comput. Chem. Eng. 13(10),
pp. 1117-1132 (1989)

[6] Floudas, C.A.: Nonlinear and Mixed-Integer Optimization - Fundamen-
tals and Applications. Oxford University Press, Oxford (1995)

[7] Hock, W., Schittkowski, K.: Test Examples for Non-linear Programming
Codes. Lecture Notes in Economics and Mathematical Systems, 187,
Spring-Verlag, Berlin (1981)

[8] G. R. Kocis, and I. E. Grossmann: Global optimization of nonconvex
mixed-integer nonlinear programming (MINLP) problems in process
synthesis. Ind. Eng. Chem. Res., 27, 1407–1421 (1988)

[9] Liang, B., Wang, J., Jiang, Y., Huang, D.: Improved Hybrid Differential
Evolution-Estimation of Distribution Algorithm with Feasibility Rules
for NLP/MINLP. Engineering Optimization Problems. Chin. J. Chem.
Eng. 20(6), pp. 1074–1080 (2012)

[10] Powell, D., Hollingsworth, J.: A NSGA-II, web-enabled, parallel opti-
mization framework for NLP and MINLP. Proceedings of the 9th annual
conference on Genetic and evolutionary computation ,pp. 2145–2150
(2007)

[11] Munawar, A.: Redesigning Evolutionary Algorithms for Many-Core
Processors Ph.D. Thesis, Graduate School of Information Science and
Technology, Hokkaido University, Japan (2012)

[12] Schlüter, M., Egea, J.A., Banga, J.R.: Extended antcolony optimization
for non-convex mixed integer nonlinear programming. Comput. Oper.
Res. 36(7), 2217–2229 (2009)

[13] Schlueter, M., Egea, J.A., Antelo, L.T., Alonso, A.A., Banga, J.R.: An
extended ant colony optimization algorithm for integrated process and
control system design. Ind. Eng. Chem. 48(14), 6723–6738 (2009)

[14] Schlüter, M., Gerdts, M.: The Oracle Penalty Method. J. Global Optim.
47(2), 293–325 (2010)

[15] Schlueter, M., Gerdts, M., Rueckmann J.J.: A Numerical Study of
MIDACO on 100 MINLP Benchmarks. Optimization 7(61), pp. 873–
900 (2012)

[16] Schlueter, M.: Nonlinear mixed integer based Optimisation Technique
for Space Applications. Ph.D. Thesis, School of Mathematics, Univer-
sity of Birmingham, UK (2012)

[17] Wasanapradit T., Mukdasanit N., Chaiyaratana N., Srinophakun T.:
Solving mixed-integer nonlinear programming problems using im-
proved genetic algorithms. Korean J. Chem. Eng. 28(1), 32–40 (2011)

[18] Yiqing, L., Xigang, Y., Yongjian, L.: An improved PSO algorithm for
solving non-convex NLP/MINLP problems with equality constraints.
Comp. Chem. Eng. 3(31), 153–162 (2007)

[19] Young, C.T., Zheng, Y. Yeh, C.W., Jang, S.S.: Information-guided
genetic algorithm approach to the solution of MINLP problems. Ind.
Eng. Chem. Res. 46, pp.1527–1537 (2007)



APPENDIX

Here the mathematical formulation of the objective func-
tion f(x, y) and constraint function(s) gi(x, y) are stated for
the eight considered benchmarks problems in Section II. Note
that in the following, x refers to continuous optimization
variables, while y refers to integer variables. For every bench-
mark problem, the search domain defined by lower and upper
bounds, the best known solution and a literature reference is
given in addition.

Example Nr. 1

Minimize f(x, y) = 2x+ y

Subject to: g1(x, y) ≥ y − 1.5x

g2(x, y) ≥ 1.6− x− y

Bounds: 0 ≤x ≤ 1.6

0 ≤y ≤ 1

Solution: f(x, y) = 2

x = 0.5

y = 1

This benchmark is taken from Kocis and Grossmann [8].

Example Nr. 2

Minimize f(x, y) = −y + 2x1 + x2

Subject to: g1(x, y) = x1 − 2e−x2

g2(x, y) ≥ x1 − x2 − y

Bounds: 0.5 ≤x1 ≤ 1.4

0 ≤x2 ≤ 0.5

0 ≤y ≤ 1

Solution: f(x, y) = 2.124

x1 = 1.375183

x2 = 0.374083

y = 1

This benchmark is taken from Cardoso et al. [2].

Example Nr. 3

Minimize f(x, y) = −0.7y + 5(x1 − 0.5)2 + 0.8

Subject to: g1(x, y) ≥ ex1−0.2 + x2

g2(x, y) ≥ −1− x2 − 1.1y

g3(x, y) ≥ 0.2− x1 + 1.2y

Bounds: 0.2 ≤x1 ≤ 1

−2.22554 ≤x2 ≤ −1
0 ≤y ≤ 1

Solution: f(x, y) = 1.07654

x1 = 0.934169

x2 = −2.090483
y = 1

This benchmark is taken from Floudas [6].

Example Nr. 4

Minimize f(x, y) = 7.5y + 5.5(1− y) + 7x1 + 6x2

+ 50(1− y) / (0.8(1− e−0.4x2))

+ 50y / (0.9(1− e−0.5x1))

Subject to: g1(x, y) ≥ 2y − 0.9(1− e−0.5x1)

g2(x, y) ≥ 2(1− y)− 0.8(1− e−0.4x2)

g3(x, y) ≥ 10y − x1

g4(x, y) ≥ 10(1− y)− x2

Bounds: 0 ≤x1 ≤ 100

0 ≤x2 ≤ 100

0 ≤y ≤ 1

Solution: f(x, y) = 99.239635

x1 = 3.714916

x2 = 0

y = 1

This benchmark is taken from Babu and Angira [1].



Example Nr. 5

Minimize f(x, y) = (y1 − 1)2 + (y2 − 2)2 + (y3 − 1)2

− log(y4 + 1) + (x1 − 1)2 + (x2 − 2)2

+ (x3 − 3)2

Subject to: g1(x, y) ≥ 5− y1 − y2 − y3 − x1 − x2 − x3

g2(x, y) ≥ 5.5− x2
1 − x2

2 − x2
3 − y23

g3(x, y) ≥ 1.2− x1 − y1
g4(x, y) ≥ 1.8− x2 − y2
g5(x, y) ≥ 2.5− x3 − y3
g6(x, y) ≥ 1.2− x1 − y4
g7(x, y) ≥ 1.64− x2 − y2
g8(x, y) ≥ 4.25− x3 − y3
g9(x, y) ≥ 4.64− x3 − y2

Bounds: 0 ≤x1,2,3 ≤ 100

0 ≤y1,2,3,4 ≤ 1

Solution: f(x, y) = 3.557466

x1 = 0.186127

x2 = 0.805375

x3 = 1.908719

y1 = 1

y2 = 1

y3 = 0

y4 = 1

This benchmark is taken from Floudas et al. [5].

Example Nr. 6

Minimize f(x, y) = −5.357854x2
1 − 0.835689y1x3

− 37.29329y1 + 40792.141

Subject to: g1(x, y) ≥ 85.334407 + 0.0056858y2x3

+ 0.0006262y1x2 − 0.0022053x1x3

g2(x, y) ≥ 80.51249 + 0.0071317y2x3

+ 0.0029955y1y2 + 0.0021813x2
1 − 110

g3(x, y) ≥ 9.300961 + 0.0047026x1x3

+ 0.0012547y1x1 + 0.0019085x1x2 − 25

g4(x, y) ≥ 92− g1(x, y)

g5(x, y) ≥ 20− g2(x, y)

g6(x, y) ≥ 5− g2(x, y)

Bounds: 27 ≤x1,2,3 ≤ 45

78 ≤y1 ≤ 102

33 ≤y2 ≤ 45

Solution: f(x, y) = −32217.4
x1 = 27.495294

x2 = 27

x3 = 27.181610

y1 = 80

y2 = 39

This benchmark is taken from Cardoso et al. [2].

Example Nr. 7

Minimize f(x, y) = 5y1 + 8y2 + 6y3 + 10y4
+ 6y5 + 7y6 + 4y7 + 5y8
− 10x1 − 15x2 + 15x3 + 80x4

+ 25x5 + 35x6 − 40x7 + 15x8

− 35x9 + ex1 + ex2/1.2

− 65log(x3 + x4 + 1)

− 90log(x5 + 1)− 80log(x6 + 1)

Subject to: g1(x, y) = 1− y1 − y2
g2(x, y) = −y4 + y6 + y7
g3(x, y) ≥ 1.5log(x5 + 1) + log(x6 + 1) + x8

g4(x, y) ≥ log(x3 + x4 + 1)

g5(x, y) ≥ x1 + x2 − x3 − 2x4 − 0.8x5

− 0.8x6 + 0.5x7 + x8 + 2x9

g6(x, y) ≥ x1 + x2 − 2x4 − 0.8x5 − 0.8x6

+ 2x7 + x8 + 2x9

g7(x, y) ≥ 2x4 + 0.8x5 + 0.8x6 − 2x7 − x8 − 2x9

g8(x, y) ≥ 0.8Dx5 + 0.8x6 − x8

g9(x, y) ≥ x4 − x7 − x9

g10(x, y) ≥ 0.4x5 + 0.4x6 − 1.5x8

g11(x, y) ≥ −0.16x5 − 0.16x6 + 1.2x8

g12(x, y) ≥ −x3 + 0.8x4

g13(x, y) ≥ x3 − 0.4x4

g14(x, y) ≥ 1− ex1 + 10y1

g15(x, y) ≥ 1− ex2/1.2 + 10y2
g16(x, y) ≥ −x7 + 10y3
g17(x, y) ≥ −0.8x5 − 0.8x6 + 10y4
g18(x, y) ≥ −2x4 + 2x7 + 2x9 + 10y5
g19(x, y) ≥ −x5 + 10y6
g20(x, y) ≥ −x6 + 10y7
g21(x, y) ≥ −x3 − x4 + 10y8
g22(x, y) ≥ 1− y4 − y5
g23(x, y) ≥ −y3 + y8



Bounds: 0 ≤x1,2,4,5,6,7 ≤ 2

0 ≤x3 ≤ 1

0 ≤x8 ≤ 1

0 ≤x9 ≤ 3

0 ≤y1,2,3,4,5,6,7,8 ≤ 1

Solution: f(x, y) = 68.01

x1 = 0.000025

x2 = 1.985444

x3 = 0.379430

x4 = 0.484475

x5 = 1.872188

x6 = 0.000328

x7 = 0.006863

x8 = 0.245522

x9 = 0.485227

y1 = 0

y2 = 1

y3 = 0

y4 = 1

y5 = 0

y6 = 1

y7 = 0

y8 = 1

This benchmark is taken from Duran and Grossmann [4].

Example Nr. 8

Minimize f(x, y) = 5.357854x2
3 + 0.835689x1x5

+ 37.29329x1 − 40792.141

Subject to: g1(x, y) ≥ 85.334407 + 0.0056858x2x5

+ 0.0006262x1x4 − 0.0022053x3x5

g2(x, y) ≥ 80.51249 + 0.0071317x2x5

+ 0.0029955x1x2 + 0.0021813x2
3 − 90

g3(x, y) ≥ 9.300961 + 0.0047026x3x5

+ 0.0012547x1x3 + 0.0019085x3x4 − 20

g4(x, y) ≥ 92− g1(x, y)

g5(x, y) ≥ 110− g2(x, y)

g6(x, y) ≥ 25− g3(x, y)

Bounds: 78 ≤x1 ≤ 102

33 ≤x2 ≤ 45

27 ≤x3 ≤ 45

27 ≤x4 ≤ 45

27 ≤x5 ≤ 45

Solution: f(x, y) = 30665.538669

x1 = 78

x2 = 33

x3 = 30

x4 = 45

x5 = 36.775830

This benchmark is taken from Hock and Schittkowski [7].


