Recent Advances in Optimization Software for Space Applications

Martin Schlueter

Information Initiative Center Hokkaido University, Japan

JAXA/ISAS - Seminar Sagamihara, Kanagwa, Japan

 17^{th} Feb 2014

 000

000000 00000 000000 0000000 \cap

Outline

¹ [The Optimization Problem](#page-2-0)

- [MINLP Mixed Integer Nonlinear Programming](#page-2-0)
- ² [The Optimization Software](#page-5-0)
	- [MIDACO Global Optimization Software for MINLP](#page-5-0)

³ [Space Applications](#page-8-0)

- [Ascent of Multi-Stage Launch Vehicle \(Delta III\)](#page-9-0)
- [Interplanetary Space Trajectory \(MGA-DSM-MINLP\)](#page-15-0)
- [ESA Space Benchmarks \(ACT-GTOP\)](#page-20-0)
- [The Impact of Parallelization](#page-26-0)

[References](#page-33-0)

. [Literature References](#page-34-0)

[Conclusions](#page-35-0)

00000 000000 0000000

The Optimization Problem

MINLP

Mixed Integer Nonlinear Programming

Martin Schlueter [Recent Advances in Optimization Software for Space Applications - JAXA/ISAS Seminar](#page-0-0) 17 Feb 2014 3/37

00000 000000 0000000

The Optimization Problem

General MINLP problem:

Minimize
$$
f(x, y)
$$
 $(x \in \mathbb{R}^{n_{con}}, y \in \mathbb{Z}^{n_{int}}, n_{con}, n_{int} \in \mathbb{N})$

subject to:
$$
g_i(x, y) = 0
$$
, $i = 1, ..., m_e \in \mathbb{N}$
\n $g_i(x, y) \ge 0$, $i = m_e + 1, ..., m \in \mathbb{N}$
\n $x_i \le x \le x_u$ $(x_i, x_u \in \mathbb{R}^{n_{con}})$
\n $y_i \le y \le y_u$ $(y_i, y_u \in \mathbb{N}^{n_{int}})$

- No information on $f()$ or $g()$ available [Blackbox]
- No gradients available for $f()$ and $g()$
- Integers must be integers (no relaxation)

000000 00000 000000 0000000

The Optimization Problem

About MINLP problems:

- **4** Hard to solve
- \bullet Significanlly increased search space \rightarrow more design possibilities
- **3** Classic approach on MINLP: Branch and Bound (B&B)
- ⁴ **New approach** on MINLP: Evolutionary Programming

00000 000000 0000000

The Optimization Software

MIDACO

Mixed Integer Distributed Ant Colony Optimization

000000 00000 000000 2000000

The Optimization Software

Key features of MIDACO:

- **1** Written entirely from scratch (in F77)
- Search algorithm based on evolutionary ACO heuristic
- **3** Improved constraint handling by Oracle Penalty Method
- ⁴ Successfully tested on problems with up to 1000 variables
- ⁵ Suitable for expensive problems, due to **parallelization**
- \bullet Available for: Excel, Matlab, Python, C_{++} and Fortran
- **¹** Licensed Users in over 12 countries
- **8** Over 7 Years of ongoing development

00000 000000 2000000

The Optimization Software

As shown in [1], [2] and [3], MIDACO represents the:

1 State-of-the-art for evolutionary programming on MINLP.

As shown **Today** (and in [4] and [5]), MIDACO also represents the:

1 State-of-the-art for interplanetary space mission planning.

Furthermore, due its MINLP capabilities MIDACO can:

1 Open new doors in space application design.

00000 000000 0000000

Space Applications

Space Applications

Martin Schlueter [Recent Advances in Optimization Software for Space Applications - JAXA/ISAS Seminar](#page-0-0) 17 Feb 2014 9 / 37

00000 000000 0000000

[Ascent of Multi-Stage Launch Vehicle \(Delta III\)](#page-9-0)

Ascent of Multi-Stage Launch Vehicle

Boing Delta Rocket Family

[The Optimization Problem](#page-2-0) [The Optimization Software](#page-5-0) [Space Applications](#page-8-0) [References](#page-33-0) [Conclusions](#page-35-0)

000 000 000 000 000 000 0000 0

 000000 00000 000000 nnnnnn

[Ascent of Multi-Stage Launch Vehicle \(Delta III\)](#page-9-0)

MIDACO has been used to optimize the ascent of a multi-stage launch vehicle. The model of the launch vehicle was based on a Delta III Space Rocket (Boeing) and contained continuous and discrete variables simultaneously (\rightarrow MINLP) The ascent of the vehicle is formulated as optimal control problem of a (discretized) constrained system of ordinary differential equations (ODE's).

MINLP problem specifications:

- **128** decision variables
- 2 3 integer variables
- ³ 127 constraints
- 5 equality constraints

00000 000000 0000000

[Ascent of Multi-Stage Launch Vehicle \(Delta III\)](#page-9-0)

Financial constraint

5 Different types of strap-on boosters

Additional constraint: Maximal financial budget $= 9$

00000 000000 0000000

[Ascent of Multi-Stage Launch Vehicle \(Delta III\)](#page-9-0)

Integer Extension

Formulating the type and number of strap-on boosters as variable. 5 Different Booster types. Up to 9 active booster in first stage.

Overall best configuration: $y = \{8, 3, 3\}$, $f(x, y) = -7647.5(kg)$

00000 000000 0000000

[Ascent of Multi-Stage Launch Vehicle \(Delta III\)](#page-9-0)

[The Optimization Problem](#page-2-0) [The Optimization Software](#page-5-0) [Space Applications](#page-8-0) [References](#page-33-0) [Conclusions](#page-35-0)

000

00000 000

00000 000000 0000000

[Ascent of Multi-Stage Launch Vehicle \(Delta III\)](#page-9-0)

Martin Schlueter [Recent Advances in Optimization Software for Space Applications - JAXA/ISAS Seminar](#page-0-0) 17 Feb 2014 15 / 37

 \bullet 0000 000000 0000000

[Interplanetary Space Trajectory \(MGA-DSM-MINLP\)](#page-15-0)

Interplanetary Space Trajectory (MGA-DSM-MINLP)

NASA's Galileo Mission (launched 1989)

Martin Schlueter [Recent Advances in Optimization Software for Space Applications - JAXA/ISAS Seminar](#page-0-0) 17 Feb 2014 16 / 37

 00000 000000 0000000

[Interplanetary Space Trajectory \(MGA-DSM-MINLP\)](#page-15-0)

Mission Layout (MGA-DSM)

Possible integer choices for Fly-By Planets:

MINLP: 21 Variables (3 Integer) & 12 Constraints

Martin Schlueter [Recent Advances in Optimization Software for Space Applications - JAXA/ISAS Seminar](#page-0-0) 17 Feb 2014 17 / 37

Planet Flyby 1

Planet Flyby 2

Planet Flyby 3

 00000 000000 0000000

[Interplanetary Space Trajectory \(MGA-DSM-MINLP\)](#page-15-0)

Table 9: Optimization variables x (continuous) and u (integer) with bounds

 y_1

 y_2

 y_3

Martin Schlueter [Recent Advances in Optimization Software for Space Applications - JAXA/ISAS Seminar](#page-0-0) 17 Feb 2014 18 / 37

1 (Mercury)

1 (Mercury)

1 (Mercury)

 9 (Pluto)

 9 (Pluto)

 9 (Pluto)

 00000 000000 0000000

[Interplanetary Space Trajectory \(MGA-DSM-MINLP\)](#page-15-0)

Table 13: 10 test runs by MIDACO on mission model with 3% sphere of action

Run	Aunch		Duration	FlvBv	FlvBv 2	FlvBv 3
	6 Nov. 1989	2553	5.88	Venus	Earth	Earth
$\overline{2}$	30 Nov. 1989	3310	4.83	Venus	Earth	Earth
3	30 Nov. 1989	3218	4.88	Venus	Earth	Earth
	10 Jul. 1989	3390	3.97	Venus	Earth	Mars
5	20 Nov. 1989	2890	4.77	Venus	Earth	Earth
6	23 May 1989	2759	5.35	$_{\rm Earth}$	Venus	Earth
	21 Mar 1989	infeasible	4.85	$_{\rm Earth}$	Earth	Mars
8	13 Apr. 1989	3290	4.54	Earth	Venus	Earth
9	30 Nov. 1989	3289	4.79	Venus	Earth	Earth
10	16 Sep. 1989	2684	6.10	Venus	Earth	Earth

Table 14: Comparison between original Galileo and MIDACO Missions

Martin Schlueter [Recent Advances in Optimization Software for Space Applications - JAXA/ISAS Seminar](#page-0-0) 17 Feb 2014 19 / 37

00000 $•00000$ nnnnnn

[ESA Space Benchmarks \(ACT-GTOP\)](#page-20-0)

GLOBAL TRAJECTORY OPTIMISATION PROBLEMS DATABASE

Please visit:

http://www.esa.int/gsp/ACT/inf/projects/gtop/gtop.html

00000 000000 0000000

[ESA Space Benchmarks \(ACT-GTOP\)](#page-20-0)

GTOP database benchmark problems

*Best solution found by MIDACO and published on ESA Website (2013).

−→ Best known solutions required several **Month and even Years**

00000 000000 0000000

[ESA Space Benchmarks \(ACT-GTOP\)](#page-20-0)

Many researchers worked on GTOP benchmarks

−→ GTOP benchmarks are **Hard to solve**

Martin Schlueter [Recent Advances in Optimization Software for Space Applications - JAXA/ISAS Seminar](#page-0-0) 17 Feb 2014 23 / 37

[ESA Space Benchmarks \(ACT-GTOP\)](#page-20-0)

10 Test Runs of MIDACO (with default parameters) on Cassini1 (0.1%)

Best known solution $f(x) = 4.9307$ (DeltaV)

Cassini1 is the *easiest* GTOP problem

00000 0000 0000000

[ESA Space Benchmarks \(ACT-GTOP\)](#page-20-0)

MIDACO holds 1st and 2nd Record Solution on Messenger (Full) [Hardest GTOP Problem]

8 Solution submission over a period of 4.5 Years $→$ Very Hard

Martin Schlueter [Recent Advances in Optimization Software for Space Applications - JAXA/ISAS Seminar](#page-0-0) 17 Feb 2014 25 / 37

00000 00000 0000000

[ESA Space Benchmarks \(ACT-GTOP\)](#page-20-0)

Out-of-the-box performance of MIDACO on GTOP Benchmarks

−→ MIDACO solves 5 out of 7 within **Minutes to Hours**

→ MIDACO can solve **7 out of 7** with some tuning

00000 000000 0000000

[The Impact of Parallelization](#page-26-0)

The Impact of Parallelization

on

Space Trajectory Optimization

Martin Schlueter [Recent Advances in Optimization Software for Space Applications - JAXA/ISAS Seminar](#page-0-0) 17 Feb 2014 27 / 37

00000 000000 ∩●∩∩∩∩∩

[The Impact of Parallelization](#page-26-0)

MIDACO distributes the problem evaluation calls:

Evaluate block of P iterates $x1, x2,..., xP$ $\begin{array}{l} f1 = f(x1) \ , \ q1 = g(x1) \\ f2 = f(x2) \ , \ q2 = g(x2) \\ \vdots \end{array}$ evaluate **P** iterates in parallel $fP = f(xP)$, $qP = q(xP)$ MIDACO accepts P iterates with corresponding function values f and g and returns Pnew iterates $[x1, x2,..., xP] = MIDACO(x1, x2,..., xP)$
f1, f2,..., fP,
g1, g2,..., gP)

−→ Useful for **cpu-time expensive** applications!

 0000000

[The Impact of Parallelization](#page-26-0)

Impact of parallelization for $P = 1,2,4,8$ on GTOP-Cassini1 Benchmark

Comparison of potential and actual speed up

 \rightarrow Cassini1 is too light to fully benefit from parallelization

000000 00000 റററൈ∙ററ

[The Impact of Parallelization](#page-26-0)

So far, only small parallelization facors for **P** has been considered.

What happens, if larger factors are applied? How far does this concept scale up?

 \longrightarrow Some preliminary results

[The Optimization Software](#page-5-0) **[Space Applications](#page-8-0)** [References](#page-33-0) [Conclusions](#page-35-0) Conclusions Conclusi

00000 000000 00000000

[The Impact of Parallelization](#page-26-0)

Table : Potential Speed-Up

Massive Parallelization = Massive Speed-Up

 $Conjecture:$ More Variables $=$ More Speed Up

00000 000000 000000

[The Impact of Parallelization](#page-26-0)

Hypothetical case study based on previous experience

Table : Hypothetical Mission Details

Table : Estimation of Time required to solve mission with MIDACO

References

[The Optimization Problem](#page-2-0) [The Optimization Software](#page-5-0) [Space Applications](#page-8-0) **[References](#page-33-0)** [Conclusions](#page-35-0) Conclusions

000 000000 **.**

000000 00000 000000 0000000

[Literature References](#page-34-0) (selected)

- [1] Schlueter M., Gerdts M., Rueckmann J.J.: **A Numerical Study of MIDACO on 100 MINLP Benchmarks.** Optimization (Taylor & Francis), Vol 61, Issue 7, Pages 873-900 (2012)
- [2] Schlueter M., Munetomo M.: **Parallelization Strategies for Evolutionary Algorithms for MINLP.** Proc. Congress on Evolutionary Computation (IEEE-CEC), Pages 635-641 (2013)
- [3] Schlueter M., Erb S., Gerdts M., Kemble S., Rueckmann J.J.: **MIDACO on MINLP Space Applications.** Advances in Space Research (Elsevier), Vol 51, Issue 7, Pages 1116-1131 (2013)
- [4] Schlueter M.: **MIDACO Software Performance on Interplanetary Trajectory Benchmarks.** Advances in Space Research (Elsevier), submitted (2014)
- [5] Schlueter M., Munetomo M.: **Parallelization for Space Trajectory Optimization.** Proc. Congress on Evolutionary Computation (IEEE-CEC), submitted (2014)

[The Optimization Software](#page-5-0) [Space Applications](#page-8-0) [References](#page-33-0) **[Conclusions](#page-35-0)** Conclusions Conclusi

Conclusions

- MINLP can **open new possibilities** in space application design.
- MIDACO is **powerful** enough to solve MINLP space applications.
- MIDACO holds **1st** (and 2nd) record on **hardest ESA benchmark**.
- MIDACO is the **state-of-the-art** for trajectory optimization.
- **Parallel** MIDACO can significantly speed up expensive applications.

00000 000000 0000000

Thank you for your attention!

Martin Schlueter [Recent Advances in Optimization Software for Space Applications - JAXA/ISAS Seminar](#page-0-0) 17 Feb 2014 37 / 37