Recent Advances in Optimization Software for Space Applications

Martin Schlueter

Information Initiative Center Hokkaido University, Japan

JAXA/ISAS - Seminar Sagamihara, Kanagwa, Japan

17th Feb 2014

The Optimization Software 000

Space Applications 000000 00000 000000 References

Conclusions

Outline

The Optimization Problem

- MINLP Mixed Integer Nonlinear Programming
- 2 The Optimization Software
 - MIDACO Global Optimization Software for MINLP

Space Applications

- Ascent of Multi-Stage Launch Vehicle (Delta III)
- Interplanetary Space Trajectory (MGA-DSM-MINLP)
- ESA Space Benchmarks (ACT-GTOP)
- The Impact of Parallelization

4 References

Literature References

5 Conclusions

Martin Schlueter

The Optimization Software

Space Applications 000000 00000 000000 References

Conclusions

The Optimization Problem

MINLP

Mixed Integer Nonlinear Programming

Martin Schlueter

Recent Advances in Optimization Software for Space Applications - JAXA/ISAS Seminar 17 Feb 2014 3 / 37

The Optimization Software

Space Applications 000000 00000 000000 References O Conclusions

The Optimization Problem

General MINLP problem:

- No information on f() or g() available [Blackbox]
- No gradients available for f() and g()
- Integers must be integers (no relaxation)

The Optimization Software

Space Applications 000000 00000 000000 References

Conclusions

The Optimization Problem

About MINLP problems:

- Hard to solve
- $\textbf{@} Significanlly increased search space \longrightarrow \mathsf{more design possibilities}$
- Solution Classic approach on MINLP: Branch and Bound (B&B)
- Solutionary Programming

Darwin

Wallace

The Optimization Software • 00 Space Applications 000000 00000 000000 References

Conclusions

The Optimization Software

MIDACO

Mixed Integer Distributed Ant Colony Optimization

The Optimization Software

Space Applications 000000 00000 000000 References O Conclusions

The Optimization Software

7 / 37

Key features of MIDACO:

- Written entirely from scratch (in F77)
- Search algorithm based on evolutionary ACO heuristic
- S Improved constraint handling by Oracle Penalty Method
- Successfully tested on problems with up to 1000 variables
- Suitable for expensive problems, due to parallelization
- Solution Available for: Excel, Matlab, Python, C++ and Fortran
- Licensed Users in over 12 countries
- Over 7 Years of ongoing development

The Optimization Software

Space Applications 000000 00000 000000 References O Conclusions

The Optimization Software

As shown in [1], [2] and [3], MIDACO represents the:

State-of-the-art for evolutionary programming on MINLP.

As shown Today (and in [4] and [5]), MIDACO also represents the:

State-of-the-art for interplanetary space mission planning.

Furthermore, due its MINLP capabilities MIDACO can:

Open new doors in space application design.

The Optimization Software

Space Applications

References

Conclusions

Space Applications

Space Applications

The Optimization Software

Space Applications

References O Conclusions

Ascent of Multi-Stage Launch Vehicle (Delta III)

Ascent of Multi-Stage Launch Vehicle

Boing Delta Rocket Family

The Optimization Software

References O Conclusions

Ascent of Multi-Stage Launch Vehicle (Delta III)

MIDACO has been used to optimize the ascent of a multi-stage launch vehicle. The model of the launch vehicle was based on a Delta III Space Rocket (Boeing) and contained continuous and discrete variables simultaneously (\rightarrow MINLP) The ascent of the vehicle is formulated as optimal control problem of a (discretized) constrained system of ordinary differential equations (ODE's).

MINLP problem specifications:

- 128 decision variables
- 3 integer variables
- 127 constraints
- 5 equality constraints

The Optimization Software

Space Applications

References O Conclusions

Ascent of Multi-Stage Launch Vehicle (Delta III)

Financial constraint

5 Different types of strap-on boosters

Type	Thrust Power (N)	Mass T_{otal} (kg)	Mass Propellant (kg)	Cost
1	471375	14468	12758	0.75
2	565650	17361	15309	0.90
3	628500	19290	17010	1.00
4	691350	21219	18711	1.10
5	785625	24113	21263	1.25

Additional constraint: Maximal financial budget = 9

The Optimization Software

Space Applications

References O Conclusions

Ascent of Multi-Stage Launch Vehicle (Delta III)

Integer Extension

Formulating the type and number of strap-on boosters as variable. 5 Different Booster types. Up to 9 active booster in first stage.

	Table 5: Enumeration over an (leasible) booster configurations with $B_1 \ge 0$																
Π	Boos	ster-C	Config.		Boc	ster-(Config.		1	Boo	ster-(Config.		Boo	ster-(Config.	
	B_1	T_1	T_2	Best known $f(x, y)$	B_1	T_1	T_2	Best known $f(x, y)$		B_1	T_1	T_2	Best known $f(x, y)$	B_1	T_1	T_2	Best known $f(x, y)$
Г	6	1	1	-6685.71	8	1	1	-6848.21	1	7	1	1	-6789.90	9	1	-	-6855.30
	6	1	2	-6808.53	8	1	2	-6900.99		7	1	2	-6883.25	9	2	-	-7324.23
	6	1	3	-6884.45	8	1	3	-6935.36		7	1	3	-6942.60	9	3	-	-7599.88
	6	1	4	-6955.92	8	1	4	-6969.11		7	1	4	-6999.74				
	6	1	5	-7055.32	8	1	5	-7018.56		7	1	5	-7081.49				
	6	2	1	-7075.93	8	2	1	-7297.53		7	2	1	-7213.85				
	6	2	2	-7195.10	8	2	2	-7228.32		7	2	2	-7303.58				
	6	2	3	-7269.14	8	2	3	-7381.77		7	2	3	-7360.66				
	6	2	4	-7339.15	8	2	4	-7414.42		7	2	4	-7415.64				
	6	3	1	-7315.13	8	2	5	-7321.22		7	2	5	-7494.50				
	6	3	2	-7431.81	8	3	1	-7565.08		7	3	1	-7271.36				
	6	3	3	-7504.48	8	3	2	-7614.97		7	3	2	-7556.82				
1	6	4	1	-7539.17	8	3	3	-7647.50		7	3	3	-7612.70				

Overall best configuration: $y = \{8, 3, 3\}, f(x, y) = -7647.5(kg)$

Martin Schlueter

17 Feb 2014

The Optimization Software

Space Applications

References

Conclusions

Ascent of Multi-Stage Launch Vehicle (Delta III)

	Table	7:30	runs b	y MIDACO	(max time	e = 7200) + SQP (r	nax iter=10	00)	
	Boo	ster-C	onfig.		SQP			MIDACO		
Run	B_1	T_1	T_2	f(x,y)	Eval	Time	f(x, y)	Eval	Time	
1	- 9	3	1	-7599.88	357908	317.7	-7419.65	3455790	7200.0	
2	9	3	1	-7599.88	353114	315.1	-7449.22	3450447	7200.0	
3	8	3	3	-7647.50	363366	321.1	-7502.77	3443609	7200.0	<- Optimal Solution reached
4	9	3	1	-7599.88	267022	236.8	-7419.91	3449060	7200.0	
5	9	3	5	-7599.88	309848	274.6	-7418.63	3460976	7200.0	
6	9	3	1	-7599.88	173384	153.8	-7436.00	3472466	7200.0	
7	9	3	1	-7599.88	346444	307.3	-7555.53	3456612	7200.0	
8	9	3	4	-7599.88	265638	234.8	-7369.10	3457577	7200.0	
9	7	3	3	-7567.75	6713	6.4	-7565.33	3445493	7200.0	
10	9	3	4	-7599.88	284148	254.1	-7524.85	3445318	7200.0	
11	8	3	3	-7524.57	7379	7.1	-7519.89	3447985	7200.0	
12	8	3	3	-7647.50	354988	313.6	-7481.90	3459946	7200.0	<- Optimal Solution reached
13	9	3	1	-7599.88	270324	240.1	-7444.49	3453002	7200.0	
14	8	3	3	-7647.50	363938	322.9	-7479.16	3451839	7200.0	<- Optimal Solution reached
15	9	3	5	-7599.88	266138	235.9	-7500.50	3464034	7200.0	
16	9	3	5	-7599.88	301198	266.8	-7519.93	3481049	7200.0	
17	9	3	3	-7599.88	344342	307.8	-7456.35	3450507	7200.0	
18	9	3	1	-7599.88	273766	242.3	-7528.82	3454741	7200.0	
19	9	3	1	-7599.88	298972	267.0	-7527.04	3458943	7200.0	
20	9	3	4	-7599.88	324916	290.1	-7431.08	3468826	7200.0	
21	9	3	5	-7599.88	355510	317.4	-7498.23	3487475	7200.0	
22	9	3	5	-7599.88	341446	322.4	-7430.29	3042720	7200.0	
23	8	3	3	-7647.43	309588	370.1	-7536.62	2879186	7200.0	<- Optimal Solution reached
24	9	3	5	-7599.88	349166	425.9	-7460.48	2435917	7200.0	
25	8	3	3	-7513.12	7360	9.2	-7505.67	2568537	7200.0	
26	6	4	1	-7539.17	361342	332.9	-7434.57	2871096	7200.0	
27	9	3	5	-7599.88	313390	313.4	-7348.84	3060132	7200.0	
28	9	3	3	-7599.88	263188	347.4	-7475.90	3150988	7200.0	
29	8	3	3	-7647.50	355292	321.1	-7470.97	2873982	7200.0	<- Optimal Solution reached
30	8	3	3	-7647.50	365252	327.5	-7491.21	3336049	7200.0	<- Optimal Solution reached

The Optimization Software

Space Applications 000000

References

Conclusions

Ascent of Multi-Stage Launch Vehicle (Delta III)

Martin Schlueter

Recent Advances in Optimization Software for Space Applications -

17 Feb 2014

The Optimization Software

Space Applications

References

Conclusions

Interplanetary Space Trajectory (MGA-DSM-MINLP)

Interplanetary Space Trajectory (MGA-DSM-MINLP)

NASA's Galileo Mission (launched 1989)

Martin Schlueter

Recent Advances in Optimization Software for Space Applications - JAXA/ISAS Seminar 17 Feb 2014 16 / 37

The Optimization Software

Space Applications ○○○○○ ○○○○○ ○○○○○○ ○○○○○○ References

Conclusions

Mission Layout (MGA-DSM)

Interplanetary Space Trajectory (MGA-DSM-MINLP)

Possible integer choices for Fly-By Planets:

Number	Planet
1	Mercury
2	Venus
3	Earth
4	Mars
5	Jupiter
6	Saturn
7	Uranus
8	Neptune
9	Pluto

MINLP: 21 Variables (3 Integer) & 12 Constraints

Martin Schlueter

Recent Advances in Optimization Software for Space Applications - JAXA/ISAS Seminar

17 Feb 2014

The Optimization Software

Planet Flyby 1

Planet Flyby 2

Planet Flyby 3

Space Applications

References

Conclusions

Interplanetary Space Trajectory (MGA-DSM-MINLP)

Lower Bound Variable Description Upper Bound continuous Launch Date 0 (01 Jan. 1989) 730 (31 Dec. 1990) x_1 Duration of Arc 1 0 (days) 200 (davs) x_2 Duration of Arc 2 0 (days)400 (days) x_3 Duration of Arc 3 0 (davs) 800 (davs) x_A Duration of Arc 4 0 (days) 100 (days) x_5 Duration of Arc 5 0 (days)1200 (days) x_6 Thrust Escape (X direction)-6000.0 (m/sec) 6000.0 (m/sec) x_7 Thrust Escape (Y direction) -6000.0 (m/sec) 6000.0 (m/sec) x_8 Thrust Escape (Z direction) -3000.0 (m/sec) 3000.0 (m/sec) x_9 Thrust Capture (X direction) -6000.0 (m/sec) 6000.0 (m/sec) x_{10} Thrust Capture (Y direction) -6000.0 (m/sec) 6000.0 (m/sec) x_{11} Thrust Capture (Z direction) -3000.0 (m/sec) 3000.0 (m/sec) x_{12} Thrust DSM (X direction)-1000.0 (m/sec) 1000.0 (m/sec) x_{13} Thrust DSM (Y direction) -1000.0 (m/sec) 1000.0 (m/sec) x_{14} Thrust DSM (Z direction) -500.0 (m/sec) 500.0 (m/sec) x_{15} Altitude Flyby 1 $1.00 \ (\sim Alt_{max})$ x_{16} $0.00 \ (\sim Alt_{min})$ $0.00 \ (\sim Alt_{min})$ 1.00 (~ Alt_{max}) x_{17} Altitude Flyby 2 $0.00 \ (\sim Alt_{min})$ 1.00 (~ Altmax) x_{18} Altitude Flyby 3 integer

Table 9: Optimization variables x (continuous) and y (integer) with bounds

Martin Schlueter

 y_1

 y_2

 y_3

Recent Advances in Optimization Software for Space Applications - JAXA/ISAS Seminar

1 (Mercury)

1 (Mercury)

1 (Mercury)

17 Feb 2014

9 (Pluto)

9 (Pluto)

9 (Pluto)

The Optimization Software

Space Applications

References

Conclusions

Interplanetary Space Trajectory (MGA-DSM-MINLP)

Table 13: 10 test runs by MIDACO on mission model with 3% sphere of action

Run	Launch	ΔV	Duration	FlyBy 1	FlyBy 2	FlyBy 3
1	6 Nov. 1989	2553	5.88	Venus	Earth	Earth
2	30 Nov. 1989	3310	4.83	Venus	Earth	Earth
3	30 Nov. 1989	3218	4.88	Venus	Earth	Earth
4	10 Jul. 1989	3390	3.97	Venus	Earth	Mars
5	20 Nov. 1989	2890	4.77	Venus	Earth	Earth
6	23 May 1989	2759	5.35	Earth	Venus	Earth
7	21 Mar 1989	infeasible	4.85	Earth	Earth	Mars
8	13 Apr. 1989	3290	4.54	Earth	Venus	Earth
9	30 Nov. 1989	3289	4.79	Venus	Earth	Earth
10	16 Sep. 1989	2684	6.10	Venus	Earth	Earth

Table 14: Comparison between original Galileo and MIDACO Missions

	Galileo Mission	Mission1 refine 0.5 %	Mission4 refine 0.5 %
Launch	18 Oct. 1989	8 Nov. 1989	6 Jul. 1989
Duration	6.14 Years	6.14 Years	4.15 Years
ΔV	unknown	3,350 m/sec	5,177 m/sec
1st Flyby			
Planet	Venus	Venus	Venus
Date	10 Feb. 1990	23 Feb. 1990	21 Jan. 1990
Altitude	16,000km	28,901 km	3,013km
2nd Flyby			
Planet	Earth	Earth	Earth
Date	8 Dec. 1990	5 Dec. 1990	4 Sep. 1990
Altitude	960km	473,191km	1,754 km
3rd Flyby			
Planet	Earth	Earth	Mars
Date	8 Dec. 1992	4 Dec. 1992	31 Dec. 1990
Altitude	303 km	300km	39km

Martin Schlueter

Recent Advances in Optimization Software for Space Applications - JAXA/

JAXA/ISAS Seminar

17 Feb 2014

References O Conclusions

Interplanetary Space Trajectory (MGA-DSM-MINLP)

Comparison of original Galileo Trajectory and MIDACO Mission1

The Optimization Software

Space Applications

References O Conclusions

ESA Space Benchmarks (ACT-GTOP)

GLOBAL TRAJECTORY OPTIMISATION PROBLEMS DATABASE

Please visit:

http://www.esa.int/gsp/ACT/inf/projects/gtop/gtop.html

Martin Schlueter

The Optimization Software

Space Applications

References O Conclusions

ESA Space Benchmarks (ACT-GTOP)

GTOP database benchmark problems

			Number of	Time between first
Benchmark Name	Variables	Constraints	submissions	and last submission
Cassini1	6	4	3	6 Month
GTOC1*	8	6	2	13 Month
Messenger (reduced)	18	0	3	11 Month
Messenger (full)*	26	0	8	55 Month
Cassini2*	22	0	7	14 Month
Rosetta	22	0	7	6 Month
Sagas	12	2	1	-

*Best solution found by MIDACO and published on ESA Website (2013).

ightarrow Best known solutions required several Month and even Years

Martin Schlueter

The Optimization Software

Space Applications 000000

References

Conclusions

ESA Space Benchmarks (ACT-GTOP)

Many researchers worked on GTOP benchmarks

Author(s)	Problems	Solved
Gruber (2009)	1	1
Lancinskas, Zilinskas & Ortigosa (2010)	1	0
Danoy, Pinto & Dorronsoro (2012)	1	1
Islam, Roy & Suganthan (2012)	2	0
Gad (2011)	2	0
Ampatzis and Izzo (2009)	2	1
Biazzini, Banhelyi, Montresor et al. (2009)	2	1
Musegaas (2012)	2	2
Henderson (2013)	2	1
Biscani, Izzo & Yam (2010)	3	2
Izzo (2010)	4	1
Addis, Cassioli, Locatelli et al. (2011)	4	3
Vinko & Izzo (2008)	5	1
Stracquadanio, La Ferla, De Felice et al. (2011)	7	6

\rightarrow GTOP benchmarks are Hard to solve

Martin Schlueter

Recent Advances in Optimization Software for Space Applications - JAXA/ISAS Seminar

17 Feb 2014

 The Optimization Problem
 The Optimization Software
 Space Applications
 References
 Conclusions

 OOO
 OOO
 OOO
 OOO
 OOO
 OOO

 ESA Space Benchmarks (ACT-GTOP)
 Image: Conclusions

10 Test Runs of MIDACO (with default parameters) on Cassini1 (0.1%)

Cassini1 is the *easiest* GTOP problem

The Optimization Software

Space Applications

References

Conclusions

ESA Space Benchmarks (ACT-GTOP)

MIDACO holds 1st and 2nd Record Solution on Messenger (Full) [Hardest GTOP Problem]

OBJECTIVE FUNCTION (KM/S)	SOLUTION VECTOR	CREDITS:	DATE:	Record Nr. 1 (Feb 2014)	Record Nr. 2 (Nov 2013)
6.943	N/A	M. Schlueter, J. Fiala, M. Gerdts, University of Birmingham (found by MIDACO solver)	19/06/2009	1.986 km/sec	2.104 km/sec
6.404	N/A	G. Stracquadanio, A. La Ferla, G. Nicosia, University of Catania (Found by SAGES Self-Adaptive- Gaussian Evolutionary Strategy)	17/11/2009	x[0] = 2037.793650139994270; x[1] = 4.035829738138824; x[2] = 0.555436051620218;	x[0] = 2060.627272281109072; x[1] = 4.042601735668291; x1 2] = 0.440387114371649;
6.047	N/A	M. Schlueter, University of Birmingham, M. Gerdts, University of Wuerzburg, M. Munetomo and K. Akama, Hokkaido University, S. Erb and G. Ortega, ESTEC/TEC-ECM (found by MIDACO solver)	30/11/2009	x 3 = 0.636393238132614; x 4 = 451.44775035608706; x 5 = 224.684208867341700; x 6 = 224.684208867341700; x 6 = 221.880177091452026; x 7 = 265.51570648704567; x 8 = 358.288400601717910; x 8 = 359.288400601717910;	x 3] = 0.653458177621111; x 4] = 428.9035253416718666; x 5] = 224.687235869007964; x 6] = 221.385427446748679; 7 7] = 266.124367319569956; x 8] = 358.048599982140672;
4.254	N/A	F. Biscani and D. Izzo, ESTEC Advanced Concepts Team. Found using PaGMO	01/12/2009	x[9] = 534.212841686461253; x[10] = 0.538362042300023; x[11] = 0.753339114855577; x[12] = 0.719294670714628;	x[9] = 444.42942/422302/76; x[10] = 0.581561467686441; x[11] = 0.821640755039470; x[12] = 0.698772357707937;
2.970	OLICK HERE	G. Stracquadanio, Dept of Biomedical Engineering, Johns Hopkins University, A. La Ferla, G. Nicosia, University of Catania (Found by SAGES Self-Adaptive- Gaussian Evolutionary Strategy)	28/02/2011	$\begin{array}{l} x_1 \perp_2 = & 0.132'946'0'1462'8; \\ x_1'13_1 = & 0.7503522'17362636; \\ x_1'14_1 = & 0.830544140272688; \\ x_1'15_1 = & 0.902346174479331; \\ x_1'16_1 = & 1.424520'47365302; \\ x_1'17_1 = & 1.100327418086428; \\ \end{array}$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
2.113	OLICK HERE	G. Stracquadanio, Dept of Biomedical Engineering, Johns Hopkins University, A. La Ferla, G. Nicosia, University of Catania (Found by SAGES Self-Adaptive- Gaussian Evolutionary Strategy)	10/04/2012	x 10] = 1.030586612441532; x 10] = 1.164323431714812; x 20] = 1.072024806423244; x 21] = 2.820081320974608; x 22] = 1.515793529485625; x 23] = 2.588292685117210;	x 10] = 1.052869945803204; x 19] = 1.05000430115585; x 20] = 1.477180737136582; x 21] = 2.786201469971995; x 22] = 1.603649010967501; x 23] = 2.622074959673106;
2.104	OLICK HERE	M. Schlueter, M. Munetomo (found by MIDACO solver)	17/10/2013	x[24] = 1.756804428126312; x[25] = 1.530086523658156;	x[24] = 1.571933956929996; x[25] = 1.606318012513329;

8 Solution submission over a period of 4.5 Years \longrightarrow Very Hard

Martin Schlueter

Recent Advances in Optimization Software for Space Applications - JAXA/ISAS Seminar

17 Feb 2014

The Optimization Software

Space Applications

References O Conclusions

ESA Space Benchmarks (ACT-GTOP)

Out-of-the-box performance of MIDACO on GTOP Benchmarks

Benchmark	Best Time	Average Time	Successrate
Cassini1	10 Seconds	1 Minute	100%
GTOC1	-	-	0%
Messenger (reduced)	1 Hour	9 Hours	60%
Messenger (full)	-	-	0%
Cassini2	15 Hours	15 Hours	20%
Rosetta	10 Minutes	9 Hours	90%
Sagas	1 Minute	12 Minutes	100%

 \longrightarrow MIDACO solves 5 out of 7 within Minutes to Hours

 \longrightarrow MIDACO can solve **7** out of **7** with some tuning

Martin Schlueter

The Optimization Software

Space Applications

References O Conclusions

The Impact of Parallelization

The Impact of Parallelization

on

Space Trajectory Optimization

Martin Schlueter

The Optimization Software

Space Applications

References O Conclusions

The Impact of Parallelization

MIDACO distributes the problem evaluation calls:

 \rightarrow Useful for cpu-time expensive applications!

The	Optimization	Problem	
000	C		

The Optimization Software

Space Applications

References O Conclusions

The Impact of Parallelization

Impact of parallelization for $\mathbf{P} =$ 1,2,4,8 on GTOP-Cassini1 Benchmark

Р	f(x)	Blocks	Eval	Time
1	4.977279	3150654	3150654	99
2	4.977542	1683175	3366349	57
4	4.977675	991475	3965898	38
8	4.977332	458177	3665418	23

Comparison of potential and actual speed up

Р	Potential Speed Up	Actual Speed Up
2	1.87	1.74
4	3.18	2.61
8	6.88	4.31

\longrightarrow Cassini1 is *too light* to fully benefit from parallelization

The Optimization Software

Space Applications

References O Conclusions

The Impact of Parallelization

So far, only small parallelization facors for ${\bf P}$ has been considered.

What happens, if larger factors are applied? How far does this concept scale up?

 \longrightarrow Some preliminary results

Martin Schlueter

The	Optimization	Problem
000	0	

The Optimization Software

Space Applications

References O Conclusions

The Impact of Parallelization

32 / 37

Table : Average *Blocks* needed for P=1 and P=500 (based on 100 runs)

Benchmark	Blocks $(\mathbf{P}=1)$	Blocks ($\mathbf{P} = 500$)
Cassini1 (6 Variables)	3,150,654	37,276
Sagas (18 Variables)	230,641,118	1,315,877

Table : Potential Speed-Up

Benchmark	Speed Up
Cassini1	85 times
Sagas	175 times

Massive Parallelization = Massive Speed-Up

Conjecture: More Variables = More Speed Up

The Optimization Software

Space Applications

References O Conclusions

The Impact of Parallelization

Hypothetical case study based on previous experience

Table : Hypothetical Mission Details

Number of Variables	9
Evaluation Time	6 Seconds (expensive)
Required <i>Blocks</i> for P =1	5,000,000
Potential speed up for P =500	100 times

Table : Estimation of Time required to solve mission with MIDACO

Time to solve with ${f P}{=}1$	30,000,000 Seconds	\approx 1 Year
Time to solve with $\mathbf{P}{=}500$	300,000 Seconds	pprox 3.5 Days

The Optimization Problem	The Optimization Software	Space Applications 000000 00000 000000 000000	References O	Conclusions
References				

The Optimization Software

Space Applications 000000 00000 000000 References

Conclusions

Literature References (selected)

- Schlueter M., Gerdts M., Rueckmann J.J.: A Numerical Study of MIDACO on 100 MINLP Benchmarks. Optimization (Taylor & Francis), Vol 61, Issue 7, Pages 873-900 (2012)
- Schlueter M., Munetomo M.: Parallelization Strategies for Evolutionary Algorithms for MINLP. Proc. Congress on Evolutionary Computation (IEEE-CEC), Pages 635-641 (2013)
- Schlueter M., Erb S., Gerdts M., Kemble S., Rueckmann J.J.: MIDACO on MINLP Space Applications. Advances in Space Research (Elsevier), Vol 51, Issue 7, Pages 1116-1131 (2013)
- Schlueter M.: MIDACO Software Performance on Interplanetary Trajectory Benchmarks. Advances in Space Research (Elsevier), *submitted* (2014)
- Schlueter M., Munetomo M.: Parallelization for Space Trajectory Optimization. Proc. Congress on Evolutionary Computation (IEEE-CEC), submitted (2014)

The Optimization Software

Space Applications

References

Conclusions

Conclusions

- MINLP can open new possibilities in space application design.
- MIDACO is powerful enough to solve MINLP space applications.
- MIDACO holds 1st (and 2nd) record on hardest ESA benchmark.
- MIDACO is the state-of-the-art for trajectory optimization.
- Parallel MIDACO can significantly speed up expensive applications.

 The Optimization Problem
 The Optimization Software
 Space Applications
 References

 000
 000
 000000
 000000

 000000
 000000
 000000

 000000
 0000000
 0000000

Conclusions

Thank you for your attention!

Martin Schlueter

Recent Advances in Optimization Software for Space Applications - JAXA/ISAS Seminar 17 Feb 2014 37 / 37