
A Numerical Study of MIDACO on 100 MINLP Benchmarks

Martin Schlüter∗, Matthias Gerdts†, Jan-J. Rückmann∗

∗Theoretical & Computational Optimization Group, University of Birmingham

Birmingham B15 2TT, United Kingdom

{schluetm@maths.bham.ac.uk, j.ruckmann@bham.ac.uk}

†Institut fuer Mathematik und Rechneranwendung, Universitaet der Bundeswehr Muenchen,

D-85577 Neubiberg/Muenchen, Germany

{matthias.gerdts@unibw.de}

January 31, 2012

Abstract

This paper presents a numerical study on MIDACO, a new global optimization software
for mixed integer nonlinear programming (MINLP) based on ant colony optimization and the
oracle penalty method. Extensive and rigorous numerical tests on a set of 100 non-convex
MINLP benchmark problems from the open literature are performed. Results obtained by
MIDACO are directly compared to results by a recent study of state of the art deterministic
MINLP software on the same test set. Further comparisons with established MINLP soft-
ware is undertaken in addition. This study shows, that MIDACO is not only competitive
to established MINLP software, but can even outperform those in terms of number of global
optimal solutions found. Moreover, the parallelization capabilities of MIDACO enable it to be
even competitive to deterministic software regarding the amount of (serial processed) function
evaluation, while the black-box capabilities of MIDACO offer an intriguing new robustness for
MINLP.

Keywords: Mixed Integer Nonlinear Programming (MINLP), Ant Colony Opti-
mization, Oracle Penalty Method, Parallel Computing, MIDACO, MISQP, BON-
MIN, COUENNE.

1 Introduction

Mixed integer nonlinear programming (MINLP) problems are an important class of optimization
problems with many real world applications. A mathematical formulation of a MINLP is given in
(1), where f(x, y) denotes the objective function to be minimized. In (1), the equality constraints
are given by g1,...,me(x, y) and the inequality constraints are given by gme+1,...,m(x, y). The vector x
contains the continuous decision variables and the vector y contains the discrete decision variables.
Furthermore, some box constraints as xl, yl (lower bounds) and xu, yu (upper bounds) for the
decision variables x and y are considered in (1).

1

Minimize f(x, y) (x ∈ Rncon , y ∈ Nnint , ncon, nint ∈ N)

subject to: gi(x, y) = 0, i = 1, ...,meq ∈ N
gi(x, y) ≥ 0, i = meq + 1, ...,m ∈ N
xl ≤ x ≤ xu (xl, xu ∈ Rncon)

yl ≤ y ≤ yu (yl, yu ∈ Nnint)

(1)

MINLP problems are known to be difficult to solve. This is especially true, if the objective or con-
straint functions are non-convex. Several deterministic approaches are well known and established
to solve MINLP problems. The most common ones are Branch and Bound, Outer Approximation,
Generalized Benders Decomposition, Extended Cutting Plane and Sequential Quadratic Program-
ming (SQP) based methods. A review on deterministic MINLP algorithms can be found in Gross-
mann [12]. A recent and comprehensive overview on MINLP software is presented in Bussieck and
Vigerske [3].

Contrary to those deterministic algorithms there are only few stochastic approaches on MINLP.
The most common stochastic approach is supposedly OQNLP [24], which is a hybrid algorithm,
combining a stochastic framework with a deterministic local solver. In terms of purely stochastic
approaches (this means without any combination with a deterministic method), there is currently
no algorithm known, that has been tested and compared on a meaningful set of MINLP problems.

Stochastic optimization algorithms are conceptually very different from deterministic ones. While
deterministic algorithms often come with a profound theoretical analysis, stochastic ones mostly
lack of this (due to the difficult examination of their stochastic behavior). In addition to this,
stochastic algorithms normally require much more function evaluation than their deterministic
counterparts. On the other hand, stochastic algorithms can offer the intriguing advantage of black-
box optimization. This means, that the objective and constraint functions and their properties can
be completely unknown and even exhibit critical properties like non-convexity, discontinuities, flat
spots or stochastic distortions. As MINLP problems often model complex real world applications,
which are likely to include those properties (see [19] or [20] for examples), stochastic approaches
can offer an interesting advantage over deterministic ones in this context.

MIDACO is a new software based on such a purely stochastic approach for general MINLP prob-
lems. The intention of this paper is to evaluate the performance of MIDACO on a set of 100
non-convex MINLP problems and compare it to established MINLP software. Yet, to the best
knowledge of the authors, this is the first time, that the performance of a purely stochastic ap-
proach on MINLP is directly compared to the performance of a set of deterministic approaches on
a comprehensive set of benchmark problems.

The numerical results are surprising. Those reveal that MIDACO can obtain a significant higher
percentage on global (or best known) optimal solutions than any of the tested deterministic MINLP
software at a reasonable cpu-runtime (see Table 1 and Table 2). However, this study also shows,
that MIDACO requires many more function evaluation than the deterministic solvers.

The high amount of function evaluation usually required by stochastic algorithms is often consid-
ered a knock-out argument for their application to cpu time expensive problems (like many real
world applications). In case of MIDACO this argument is not fully effective. The MIDACO soft-
ware features the option of massive parallelization of the problem function evaluation. Therefore
this feature can be seen as a remedy, enabling the use of it even on very time consuming problems.
The numerical results presented in this contribution also investigate the impact of massive paral-
lelization on the performance of MIDACO on the same test set of 100 MINLP benchmarks. The
results demonstrate, that MIDACO is even competitive to some of the deterministic SQP-based
algorithms in terms of (serial processed) function evaluations, if parallelization is used.

This paper is structured as follows: Firstly, a general introduction to the software MIDACO is
given. Secondly, extensive numerical results investigating the performance on 100 MINLP bench-

2

marks under several scenarios is presented, discussed and compared with established deterministic
MINLP software. Next, a brief section is referencing some successful MIDACO utilizations on
real world applications. Finally, some conclusions are drawn. Additionally to the numerical re-
sults section, two appendices are attached. Those provide detailed information on the individual
benchmarks tested and the corresponding MIDACO performance.

2 The MIDACO Software

This section provides information on the software named MIDACO, which stands for Mixed Integer
Distributed Ant Colony Optimization. It is a global optimization algorithm for black-box MINLP
problems based on the ant colony optimization metaheuristic for continuous search domains pro-
posed by Socha and Dorigo [18]. The intention of this section is to provide general information
on the software and its usage, but not to give an introduction to ant colony optimization in gen-
eral. Readers with interest in ant colony optimization (ACO) are requested to directly consult
corresponding literature like Dorigo [6] and Blum [2] (for a general introduction) or Socha [17] (for
the application of ACO on continuous and mixed integer search domains). Readers with a special
interest in the underlying theoretical ACO algorithm of MIDACO can find a detailed description in
[19] and [20]. Readers with a particular interest in the constraint handling technique of MIDACO
will find comprehensive information in [21] and are kindly invited to contact the author directly.

MIDACO has been developed for a time period of over four years and is originally written in
Fortran77. It has furthermore a C translation and a Matlab and MS-Excel gateway. The software is
entirely written from scratch and does not require any dependencies, like libraries, external routines
or compiler depended random number generators. Uniform random numbers are generated by an
internal implementation of a Xorshift generator [14] and transformed to normal distributed ones
via the Box-Muller [1] method. MIDACO does not relax discrete optimization variables. A main
focus of the software is its user friendliness and easy compilation, hence it is distributed within
a single file for Fortran (midaco.f) and C (midaco.c) and in only two separated files for Matlab
(midaco.m + midacox.c). The software has been successfully tested with different compilers (g77,
gFortran, g95, gcc, ifort, NAG-Fortran) and on different platforms (Windows, Linux, Mac).

The MIDACO algorithm is a derivative free method and is therefore able to handle even discontin-
ues problem functions. The software handles all its parameters by itself (if not selected differently
by the user) in an autopilot like mode. It constantly performs automatic restarts to escape from
local solutions and to refine the current best solution. The later features enables the algorithm
to be executed even over a long time horizon without the necessity of any user interference. The
software is intended for problems with up to some hundreds of variables and constraints. Interested
readers can find more information on the MIDACO home page www.midaco-solver.com.

2.1 Reverse Communication and Distributed Computing

A key feature of MIDACO is its calling by reverse communication. This means, that the call to the
objective function and constraints happens outside the MIDACO source code. This concept does
not only guarantee a numerically stable gateway to other languages (like Matlab), but also enables
the software to be enriched by a valuable option of distributed computing. Within one reverse
communication step MIDACO does accept and returns an arbitrary large number of L iterates at
once. Hence, those L iterates can be evaluated regarding their objective and constraint functions
in parallel, outside and independently from the MIDACO source code. This idea of passing a block
of L iterates at once within one reverse communication step to the optimization algorithm is taken
from the code NLPQLP by Schittkowski [16].

3

www.midaco-solver.com

Figure 1: The reverse communication loop over a block of L iterates

Figure 1 illustrates the essential reverse communication loop over the function evaluation calls to
f(x) and g(x) and the MIDACO code. Within one loop, a block of L iterates is evaluated regarding
their objective function f(x) and constraints g(x). Then those iterates are passed together with
their corresponding objective and constraint values to the MIDACO code. Within MIDACO those
iterates are then processed and MIDACO calculates and returns a new block of L iterates that
needs to be evaluated again.

This concept allows an independent and user controlled distributed computing of the objective and
constraint function evaluations. In other words, the parallelization option is valid for any language
on any CPU architecture without the necessity of adapting the MIDACO source code in any
way. This includes in particular multi-core PC’s, PC-Clusters, GPU (Graphical Processing Unit)
based computation and HPC (High Performance Computing). As the parallelization factor L can
be arbitrary large, MIDACO is absolute suitable for massive parallelization. The parallelization
option is considered a valuable feature, that enables the use of MIDACO even on very cpu time
consuming problems (see Section 3.4.1).

2.2 Parameters and Print Options

With regard to the user friendliness, MIDACO does not require any parameters to be set. For
experienced users however, there are seven parameters available to adjust the software to a specific
need or problem. By default, all these parameters are set to zero and MIDACO will select them
internally by some autopilot mode. If one of those is set not equal to zero by the user, it is activated
and the software will act accordingly. In the following, all seven optional parameters are briefly
described:

4

Seed - Initial seed for internal pseudo random number generator within MIDACO. The Seed
determines the sequence of pseudo random numbers sampled by the generator. Therefore
MIDACO runs using an identical Seed, will produce exactly the same results (executed
on the same computer under identical compiler conditions). As the Seed may be an arbitrary
integer greater or equal to zero, the user can easily generate (stochastically) different
runs, using a different Seed parameter. The advantage of a user specified random seed is,
that promising runs can easily be reproduced by knowing the applied Seed parameter. This
is in esp. useful, if a run must be stopped out of some reason and should be restarted again.

Qstart - This parameter allows the user to specify the quality of the starting point. If
Qstart is set greater than 0, the initial population of iterates (also called ants)
is sampled closely around the starting point. In particular, the standard deviation
for continuous variables is set to |xl − xu|/Qstart and the mean is set to
the corresponding dimension of the starting point. For integer variables the
standard deviation is set to max{|yl − yu|/Qstart, 1/

√
Qstart}

to avoid a too tight sampling. The greater Qstart is selected, the more
closely does MIDACO search around the starting point. This option is very
useful to refine previously calculated solutions. It is important to note,
that this option does not shrink the search space. The original bounds
xl, yl and xu, yu are still valid, only the initial population of ants
is specifically focused within these bounds.

Autostop - This parameter activates an internal stopping criteria for MIDACO. While it is
recommended, that the user will run MIDACO for a fixed time or evaluation
budget, this option allows the software to stop the optimization run by itself.
Autostop defines the amount of internal restarts in sequence, that did not reveal
an improvement in the objective function value. The greater Autostop is selected,
the higher the chance of global optimality, but also the longer the optimization run.
As Autostop can be selected any integer greater or equal to zero, it gives the user
the freedom to compromise between global optimality and cpu run time to his or her
specific needs.

Oracle - This parameter specifies a user given oracle parameter Ω [21] to the penalty function
within MIDACO. If Oracle is selected not equal to zero, MIDACO will use the Oracle
as long as a better feasible solution has been found. In that case the regular oracle
update (see [21]) starts to take place. This option can be useful for problems with
difficult constraints where some background knowledge on the problem exists.

Ants - This parameter fixes the amount of iterates (also called ants) within a generation.
This option can be useful to adapt MIDACO to expensive cpu time problems,
or problems with many variables (e.g. more than hundred).

Kernel - This parameter fixes the kernel size in a generation used by the Gauss distributions.
The Kernel parameter must be used in combination with the Ants parameter and
is intended to make MIDACO more efficiently on specific problems.

Character - This parameter activates a specific set of MIDACO internal parameters specially tuned
for either purely continuous, purely combinatorial or mixed integer problems. If Character
is set to zero, MIDACO will select the according set of internal parameters solely based on
the problem dimensions n and nint. The intention of this option is to allow the user to
manually activate a different set, if a problem has a specific structure. For example, consider
a mixed integer problem with 98 continuous and 2 integer variables. In such a case it might
be more promising to activate the internal Character for purely continuous, rather
than the one for mixed integer, problems.

5

For the sake of a maximal portability and efficiency, the MIDACO Fortran77 and C source code
does not include any printing commands by itself. Printing options are available by external
subroutines freely distributed with example calls of MIDACO in different languages (see http://

www.midaco-solver.com/download.html). Those routines allows the user to specify the printing
to his or her specific needs with high accuracy. The routines especially feature the option to print
the current best solution to a file in a user defined frequency. In other words, the user has access to
the current best solution vector at any time during the optimization process. This is an important
feature for applications, that are executed over a long time horizon (where the run might get
corrupted and the solution would get lost otherwise).

3 Numerical Results

This section presents numerical results obtained by MIDACO on a set of 100 non-convex MINLP
benchmark problems from the open literature. The set of benchmark problems is provided in
Fortran by Schittkowski [15] and can freely be downloaded at

http://www.math.uni-bayreuth.de/~kschittkowski/mitp_coll.htm

Please note, that many of these problems are originally taken form the GAMS library MINLPlib [9].
The dimension of these problems range between 2 and 100. The number of nonlinear constraints
range between 0 to 54 with up to 17 equality constraints. The problems are either mixed integer
or purely combinatorial problems. Their difficulty widely ranges from very easy to difficult. In
conclusion, this set provides a comprehensive variety of small to medium scaled MINLP problems
and allows a rigorous testing of software codes written in Fortran.

This section will first summarize already published results obtained by some deterministic SQP-
based algorithms on the problem set. Then, numerical results by MIDACO are presented and
compared to the ones obtained by the SQP-based algorithms. Further numerical results investigate
the performance under consideration of its automatic stopping criteria. The impact of (massive)
parallelization of the problem function calls is investigated in Section 3.4. An additional comparison
of MIDACO to the MINLP solvers BONMIN [4] and COUENNE [5] is performed on a subset of
66 problems, which are provided in the GAMS library MINLPlib [9]. Finally a brief subsection
illustrates the black-box capabilities of MIDACO, by demonstrating the performance on some test
problems, which incorporate critical function properties.

All numerical results in this contribution refer to the Fortran77 version of MIDACO. The results
in Section 3.2, Section 3.3 and Section 3.4 were computed by MIDACO version 3.0 on a computer
with an Intel(R) Xeon(R) E5640 CPU with 2.67GHz clock rate. The results in Section 3.5 and
Section 3.6 were computed by MIDACO version 2.0 on a computer with an Intel(R) Core(TM) i7
Q820 CPU with 1.73GHz clock rate. If not explicitly mentioned differently, MIDACO has been
used by its default parameters (see Section 2.2).

3.1 Performance of SQP-based Algorithms

In a recent study by Exler et al. [8] eight sophisticated implementations of SQP-based algorithms
for MINLP were presented and evaluated on this set of 100 benchmarks. Table 1 contains essential
information (taken from Exler et al. [8], calculated on an Intel(R) Core(7) i7 processor with
3.16GHz) on the performance of these eight algorithms. The abbreviations of Table 1 are as
follows:

Algorithm - Name of the SQP-based algorithm for MINLP used in Exler et al. [8]
Optimal - Number of global (or best known) optimal solutions obtained out of 100 problems
Feasible - Number of feasible solutions obtained out of 100 problems
Evalmean - Average number of function evaluations over global optimal solved problems
Timemean - Average number of function evaluations over global optimal solved problems

6

http://www.midaco-solver.com/download.html
http://www.midaco-solver.com/download.html
http://www.math.uni-bayreuth.de/~kschittkowski/mitp_coll.htm

Table 1: Performance of SQP-based algorithms on 100 MINLP benchmarks presented in [8]
Algorithm Optimal Feasible Evalmean Timemean

MISQP 89 100 500 0.39
MISQP/bmod 71 100 340 0.20
MISQP/fwd 81 100 396 0.11
MISQP/rst0 69 99 241 0.14
MISQPOA 91 100 1,093 0.65
MISQPN 74 98 1,139 0.17
MINLPB4/bin 92 100 1,787 30.91
MINLPB4/int 88 94 218,881 4.11

The algorithms MISQP/bmod, MISQP/fwd and MISQP/rst0 represent different variants of the
basic-MISQP algorithm. The algorithms MISQPOA and MISQPN are enhanced by an Outer Ap-
proximation method. The algorithms MINLPB4/bin and MINLPB4/int are enhanced by Branch
and Bound. For detailed information on all algorithms consult Exler et al. [8]. Determining the
success of an algorithm in finding a global (or best known) optimal solution is done in Exler et al.
[8] by the following criteria:

|f(x, y)− f(x∗, y∗)|
|f(x∗, y∗)|

< ε, (2)

where (x, y) is the (feasible) solution obtained by the algorithm, (x∗, y∗) is the best known solution
and ε is some tolerance. Wether a solution is feasible or not is dependent on the L∞-norm of the
vector of constraint violations. A solution (x, y) is considered feasible, if:

‖g(x, y)‖∞ < acc, (3)

where acc is some accuracy. In Exler et al. [8] a tolerance of ε = 0.01 and an accuracy of
acc = 0.0001 were applied for the numerical results.

All SQP-based algorithms were started from a priori defined initial points given for every problem
in the source code of the library by Schittkowski [15]. In Exler et al. [8] there is no investigation
on the impact of these pre-defined initial points on the performance of the eight algorithms. In
other words, it is not known, if and how much the results would change, in case other (e.g. random
initial points) would have been used.

3.2 MIDACO Performance on 100 MINLP Benchmarks

Here numerical results obtained by MIDACO 3.0 for the set of 100 MINLP problems are presented.
The same criteria for global (or best known) solutions and feasibility (illustrated in equation (2)
and (3)) like in Exler et al. [8] is applied. For the test runs of MIDACO a tolerance of ε = 0.01
and an accuracy of acc = 0.0001 was used, which are identical to those tolerances as used in Exler
et al. [8]. In the following, the term global optimal solution will always refer to the best known
solution provided in Schittkowski [15].

A critical aspect of MIDACO (and most stochastic algorithms) is the stopping criteria. For the
results in this section, there are two stopping criteria applied. Firstly, a maximal cpu time budget
of 300 seconds (5 minutes) for every test problem and secondly the success criteria for global
optimality presented in equation (2). This means, in both cases MIDACO is stopped from outside,
it does not stop by itself. In contrary to this, the SQP-based algorithms presented in Exler et
al. [8] stop by themselves and the optimality criteria is checked afterwards. The internal stopping
criteria of MIDACO, named Autostop, is investigated separately in Section 3.3.

As initial point random points are used that are stochastically generated for every individual test
run. Hence MIDACO does not make use of the pre-defined initial points provided in the library.
As MIDACO is of stochastic nature, the full set of 100 problems is evaluated 10 times using
a different random seed (from 0 to 9) for the internal pseudo random number generator. This
procedure ensures objective conclusions on the robustness of the software.

7

Table 2 lists the results obtained by MIDACO by 10 runs with different Seed on the full set of
100 problems. Besides the number of global optimal and feasible solutions, the average number of
function evaluation and time and the total required cpu time is reported. The abbreviations for
Table 2 are as follows:

Seed - Initial seed for MIDACO’s internal pseudo random number generator
Optimal - Number of global optimal solutions obtained out of 100 problems
Feasible - Number of feasible solutions obtained out of 100 problems
Evalmean - Average number of function evaluation over global optimal solved problems
Timemean - Average cpu time (seconds) over global optimal solved problems

Table 2: MIDACO Performance on 100 MINLP Benchmarks
Seed Optimal Feasible Evalmean Timemean

0 96 99 1,656,979 4.54
1 96 99 3,223,015 9.01
2 96 98 1,673,873 4.20
3 97 98 2,235,463 6.53
4 96 98 2,054,099 6.08
5 97 99 1,485,525 4.82
6 95 99 1,641,648 4.07
7 97 99 1,724,627 5.90
8 95 99 1,120,204 2.77
9 96 98 2,313,829 7.93

The results in Table 2 show a very robust MIDACO performance always obtaining between 95
and 97 global optimal solutions and between 98 and 99 feasible solutions. The average amount of
function evaluation ranges between 1.5 and 3.2 million, while the average cpu time varies between
2.77 to 9.01 seconds. Please note, that this implies that the MIDACO software is able to process
millions of iterates within seconds on a standard computer. Regarding the random seed, the best
run was obtained for Seed = 5.

Comparing the results of Table 2 with the ones obtained by the SQP-based algorithms presented in
Table 1, MIDACO robustly achieved a significantly higher percentage of global optimal solutions
than any of the SQP-based algorithms (which range between 69 and 92 global optimal solutions). In
favor of MIDACO, this conclusion must further take into account, that the SQP-based algorithms
were started only one time from pre-defined initial points. MIDACO instead was not making use
of the pre-defined initial points and was tested 10 times on the full library.

Regarding the number of function evaluation, MIDACO performs significantly more evaluation
than the SQP-based algorithms (which widely range between 241 and 218,881 evaluation). This
results is however expected, as stochastic algorithms like MIDACO are known to require much
more evaluation than deterministic ones like SQP. In terms of cpu-time performance MIDACO is
at least competitive with the SQP-based algorithms (which widely range between 0.11 and 30.91
seconds). In favor of MIDACO, one has to further take into account, that the mean values for
evaluation and cpu-time are calculated over 95 to 97 global solutions, while those of the SQP-based
algorithms are calculated only over 69 to 92 global solutions.

3.3 The Automatic Stopping Criteria

The numerical results by MIDACO presented in Section 3.2 used exclusively external stopping
criteria, in particular a maximal cpu time budget and the success in finding the global optimal
solution. In general it is difficult for most stochastic algorithms to decide by themselves, when
to stop an optimization run. MIDACO is no exception and the missing of an accurate stopping
criteria is considered a small disadvantage of the algorithm. In practice, it is recommended for

8

users to execute MIDACO with a maximal available time budget. This procedure ensures the
highest chance of global optimality.

Nevertheless, MIDACO offers the option of a heuristic stopping criteria based on the current
progress of the algorithm. If the user activates the Autostop parameter (this is selecting it an
integer greater than zero, see Section 2.2), MIDACO will stop by itself, if a number of Autostop
internal restarts in sequence did not improve the best feasible solution. The algorithm will never
stop (even if Autostop is activated), if no feasible solution at all has been found so far. This
stopping criteria is rather primitive, but in contrast to a fixed number of iterations and alike, it
takes into account the current progress of the algorithm.

A benefit of the Autostop parameter is that the user can scale this option to his or her specific needs
by selecting either a small or a large value. A small value for Autostop has a higher probability to
cause the algorithm to stop prematurely, but results in a faster runtime. A large value for Autostop
will result in a higher probability in finding the global optimal solution, but will also increase the
runtime.

In Table 3 six different MIDACO runs have been performed on the set of 100 MINLP benchmarks
applying different Autostop values. Because the Autostop feature is only in effect, if a feasible
solution is already found by MIDACO and the test set contains some highly constrained problems,
the additional stopping criteria by a maximal evaluation budget is applied. This budget is chosen
accordingly to the value of Autostop. As initial point, MIDACO assumes a random point for every
individual test run. The abbreviations used in Table 3 are as follows:

Autostop - Parameter value for automatic stopping criteria within MIDACO
Maxeval - Maximum number of function evaluation for each problem
Optimal - Number of global optimal solutions obtained out of 100 problems
Feasible - Number of feasible solutions obtained out of 100 problems
Evalmean - Average number of function evaluation over global optimal solved problems
Timemean - Average cpu time (seconds) over global optimal solved problems

Table 3: MIDACO performance regarding different Autostop values and evaluation budgets
Autostop Maxeval Optimal Feasible Evalmean Timemean

1 100000 60 92 24,457 0.04
5 500000 77 95 122,254 0.43

10 1000000 82 98 256,931 0.90
50 5000000 87 98 1,232,462 4.71

100 10000000 91 98 2,656,601 10.05
500 50000000 96 98 13,776,828 50.79

Table 3 reflects the effect on the MIDACO performance regarding the different values for the
Autostop parameter. For Autostop = 1 a low rate of 60 global optimal solutions is found with an
average of 24,457 evaluation and an average time of just 0.04 seconds. For Autostop = 500 a high
rate of 96 global optimal solutions is obtained with an average of around 13,7 million evaluation
and an average time of 50.79 seconds. The compromise between a fast runtime and a high rate of
global optimality by using different values for Autostop can be well observed in Table 3.

3.4 The Impact of Parallelization

As seen in Section 3.2 the MIDACO software is able to process millions of iterates within seconds.
Therefore MIDACO can achieve a very competitive cpu-time performance with a high chance of
global optimality, if problem function evaluation are computationally inexpensive.

Many real world applications however, are computationally expensive. Thus, performing millions
of function evaluation in serial is not practicable. Performing them in parallel however, can be done

9

in a reasonable time, if an adequate cpu architecture is available. The parallelization option offered
by MIDACO is based on this idea. By (massively) parallelizing the problem function evaluation,
even cpu time expensive problems become solvable by MIDACO in a reasonable time.

In the following, a series of experiments is performed, investigating the impact of the parallelization
factor L (see Section 2.1) on the MIDACO performance on the same set of 100 MINLP problems
known from above. A fixed budget of evaluation blocks is considered as budget for MIDACO. A
block denotes here the amount of L iterates that are evaluated and passed to MIDACO within one
reverse communication loop (see Figure 1). Regarding the computational time performance, the
amount of blocks processed by MIDACO is directly comparable to the amount of serial processed
function evaluation by an algorithm. For the experiment presented here, the problem function eval-
uation of L iterates given in every block were executed in serial, rather than actually parallelized.
As due to the reverse communication concept the function evaluation are completely independent
of the MIDACO code, this makes absolutely no difference for MIDACO. Hence those experiments
only simulate the impact of parallelization on the MIDACO performance. Note that nevertheless,
the conclusions on the impact of an actual parallelization are absolute accurate and valid.

A series of test runs considering a maximal budget of 100,000 evaluation blocks is performed. This
budgets is chosen to express the scenario of a cpu time expensive application, where not more
than 100,000 (serial processed) function evaluation can be executed in a reasonable time. The
parallelization factor L will be increased stepwise from 1 to 50,000. As done in Section 3.2, the
success criteria (2) is applied to stop MIDACO, in case it reveals the global optimal solution before
performing the maximal budget of blocks. Table 4 lists the number of global optimal and feasible
solutions regarding the corresponding parallelization factor L. The average number of blocks to be
evaluated and processed by MIDACO is given in addition. The abbreviations for Table 4 are as
follows:

L - Parallelization factor for MIDACO (see Section 2.1)
Optimal - Number of global optimal solutions obtained out of 100 problems
Feasible - Number of feasible solutions obtained out of 100 problems
Blockmean - Average number of evaluation blocks over global optimal solved problems

Table 4: Impact of L given a maximal budget of 100,000 blocks
L Optimal Feasible Blockmean

1 61 90 7,736
5 69 92 2,118

10 75 91 4,394
50 80 95 3,429

100 80 98 2,406
500 82 98 1,161

1,000 83 98 2,458
5,000 84 98 2,203

10,000 86 98 2,100
50,000 89 98 1,916

Note, that a different parallelization factor L implies a different stochastic behavior of MIDACO.
This explains the non-monotonic variations in average number of evaluation blocks.

The results presented in Table 4 demonstrate the significant impact of the parallelization factor L
on the MIDACO performance. Like expected, the results corresponding to a parallelization factor
L = 1 (which means no parallelization at all) are very weak with only 61 global optimal solved
problems and an average of 7,736 evaluation blocks. However, assuming a massive parallelization
factor of L = 50,000, the number of global optimal solved problems can be increased up to 89
with a corresponding average number of 1,916 evaluation blocks. As the number of blocks directly
corresponds with the number of serial processed function evaluation, it can be concluded that

10

MIDACO can even be competitive with some of the SQP-based algorithms (see Table 1) in terms
of function evaluation, if (massive) parallelization capabilities are available.

3.4.1 A Note on Computational Expensive Applications

As mentioned in the introduction, the high amount of function evaluation usually required by
stochastic algorithms is often used as knock-out argument regarding their application on compu-
tational expensive applications. In Section 3.4 the remedy of parallelization of the time costly
function evaluation was presented, which enables the use of MIDACO even on such costly appli-
cations.

Here a small reflection on the nature of cpu time expensive applications and its consequences should
be undertaken. It is reasonable to assume, that if an evaluation of a function (depending on not
more than some hundred variables) is requiring a lot of computational effort, it is a complex func-
tion. In esp. this means, the longer the computational evaluation time, the higher the complexity.
Very complex functions are more likely to include critical properties such as high non-convexity,
discontinuities, flat spots or even stochastic distortions.

Most deterministic approaches have great difficulties in dealing with such properties. Stochastic
approaches like MIDACO in contrary are mostly black-box optimizers and therefore capable to deal
well with such characteristics. As a consequence, the application of a stochastic approach exploiting
(massive) parallelization seems to be a more reasonable and promising choice on computational
expensive applications in general. However, in case the specific nature of a computational expensive
application is well known and a proper algorithm is available, this argument is not valid.

3.5 Comparison with BONMIN and COUENNE on GAMS benchmarks

In addition to the comparison of MIDACO to the set of SQP based MINLP solvers given in Section
3.1, a further comparison to the established MINLP solvers BONMIN [4] and COUENNE [5] is
given here. The solver BONMIN implements a variety of deterministic algorithms (in esp. Branch
& Bound and Outer Approximation) and ensures global optimal solutions for convex problems,
for non-convex MINLP problems it is a heuristic like MIDACO. The solver COUENNE is a price
wining software (COIN-OR Cup 2010, see [10]), based on a Branch & Bound algorithm and aims at
finding global optimal solutions even for non-convex MINLP problems. Both solvers are provided
by the Computational Infrastructure for Operations Research (COIN-OR) and are distributed
within the GAMS [11] environment. These solvers have been used here out of the box, without
any attempt to specify or tune their parameters or settings. A subset of 66 instances from the 100
MINLP benchmarks (see Table 9) is considered for evaluating purposes. This subset represent those
problems from the 100 MINLP benchmarks, that are originally taken from the GAMS MINLPlib
[9] benchmark library. A cpu time budget of 300 seconds has been applied to all solvers for each
instance as maximal time limit. In case of MIDACO the automatic stopping criteria (see Section
3.3) was activated. A value of 50 was chosen for the Autostop parameter (see Table 3), which
seems to provide a good balance between solution quality and cpu-runtime, based on the results
reported in Table 3. For the deterministic solvers BONMIN and COUENNE only one test run
for every problem was performed, using the pre-defined starting point from the GAMS MINLPlib.
As MIDACO is a stochastic solver, 10 test runs were performed for every problem instance, using
a different random seed. MIDACO did not make use of pre-defined starting points and uses the
lower bounds as starting point on all instances instead.

Table 5 shows the comparison of the three tested solvers regarding the number of global optimal
solutions (Optimal), the number of feasible solutions (Feasible) and the average and total cpu-
time required. In case of MIDACO the variance of global optimal and feasible solutions, based
on the different random seeds, is reported. The individual results by all three solvers on all 66
problems corresponding to Table 5 can be found in the Appendix B, Table 13. Function evaluation
are not reported in Table 5, as those information is not consistently reported within the GAMS
environment for BONMIN and COUENNE. In case of MIDACO, Table 2 and Table 3 do already

11

give evidence on the required function evaluation. All three solvers were tested on the same
computer using an Intel(R) Core(TM) i7 Q820 CPU with 1.73GHz clock rate and 4GB RAM.

Table 5: Comparison of BONMIN, COUENNE and MIDACO on 66 MINLP benchmarks
Solver Optimal Feasible T imeaver Timetotal
BONMIN 49 64 17.99 1187.62
COUENNE 48 64 40.36 2664.31
MIDACO 51 ∼ 62 64 ∼ 65 31.41 2072.73

Based on the results in Table 5 it can be concluded, that MIDACO is fully competitive to the solvers
BONMIN and COUENNE regarding solution quality and cpu-runtime. MIDACO outperforms
both regarding the number of global optimal solutions found. In terms of cpu-runtime, MIDACO
is able to outperform COUENNE, but is slower than BONMIN. Interpreting the results in Table
5, one has to take further into account, that testing BONMIN and COUENNE within GAMS
implies a significant advantage for those solvers, as GAMS provides gradients to those algorithms
for free (in terms of cpu-time). A further observation regarding the global optimality convergence
proof hold by COUENNE should be mentioned here. COUENNE reported falsely in 10 out of 66
problems (this is 15.2%) a local solution as global optimal. This is assumingly due to numerical
difficulties and software bugs. However, this observation seems to put the numerical relevance of
a theoretical convergence proof, which MIDACO lacks of, into further perspective here.

3.6 Test Problems with Critical Function Properties

In order to demonstrate the black-box capabilities of MIDACO, five mixed integer test prob-
lems, incorporating critical function properties, are considered here. These critical properties are
namely: stochastic noise, flat spots, non-convexity and non-differentiability. With exception to
non-convexity, these function properties are known to be very undesirable for most deterministic
optimization algorithms and are likely to be a knock-out argument for their usage. In contrast
to this, MIDACO (based on a stochastic metaheuristic) can deal well with such critical function
properties.

Table 6 lists the five considered test problems regarding their name, objective function and main
characteristic property. For all problems, the dimension of continuous variables x and discrete
variables y is considered to be 15. The variables x are considered to range within [−10, 10] and
analog the variables y are considered to range within the discrete set {−10, 10}. All problems
have their global optimal solution at zero. The first problem (CRIT1) does add stochastic noise
in form of uniformly distributed random numbers (ũ, û ∈ [0, 1]15) to the objective function. The
second problem (CRIT2) applies a Gauss bracket on the continuous variables x, which rounds
them to the nearest integer and therefore implies flat spots in the continuous search domain. The
third problem (CRIT3) is the well known and highly non-convex rastringin function [23] applied
here on the continuous as well as the discrete variables. The fourth problem (CRIT4) considers
a representation of the Weierstrass function [25], which is at no point differentiable. The fifth
problem (CRIT5) is simply the sum over problem one to four and therefore contains (in parts) all
the above critical properties.

12

Table 6: Five test problems with critical function properties

Name Objective Function Property

CRIT1 f1(x, y) =
∑15

i=1 x
2
i + |ũi · xi|+ y2i + |ûi · yi| stochastic noise (ũi, ûi ∈ [0, 1])

CRIT2 f2(x, y) =
∑15

i=1[xi]
2 + y2i flat spots

CRIT3 f3(x, y) = 150
∑15

i=1 x
2
i − 10cos(2πxi) + y2i − 10cos(2πyi) non-convexity

CRIT4 f4(x, y) =
∑15

i=1(xi
∑10

k=1
2ksin(2kxi)

3k
)2 non-differentiability

CRIT5 f5(x, y) = f1(x, y) + f2(x, y) + f3(x, y) + f4(x, y)

MIDACO has been tested on every problem with 10 test runs, using a different random seed and
the lower bounds as starting point. Every test run was stopped, if the success criteria of reaching
the global optimal objective function value with a precision of 10−4 was reached. Table 7 reports
the average number of function evaluation and average time on every problem. MIDACO did reach
the global solution in all cases.

Table 7: Results on critical test problems
Name Evalaver Timeaver
CRIT1 3241433 15.24
CRIT2 4608 0.02
CRIT3 909501 5.26
CRIT4 694113 6.34
CRIT5 1436361 15.16

From the results in Table 7 it can be concluded, that MIDACO is well capable of handling problems
with critical function properties. All problems could be solved in a reasonable time for a moderate
problem dimension of 30 variables in total. The stochastic noise in problem CRIT4 seems to be
the biggest challenge on this test set for MIDACO, while the presence of flat spots in problem
CRIT2 seem to have only a very low impact on the MIDACO performance.

4 Real World Applications

While the focus of this contribution is on the MIDACO performance on a set of 100 MINLP bench-
mark problems (see Section 3), this section will provide further references to successful application
of the MIDACO algorithm to real world problems done in the past. The sole purpose of this section
is to confirm, that MIDACO is not only promising on academic benchmark problems, but also on
challenging real world applications.

Table 8 provides information on several applications where beta versions of MIDACO (please
note, that the very first beta version was named ACOmi in [19] and [20]) where used. Table 8
lists brief information on the name and area of the application, its dimensions and the solution
quality obtained by MIDACO. For every problem a literature (or web-) reference to the published
MIDACO solution is given. Further information on the applications and the solutions can also be
found in those references. Table 8 uses the following abbreviations:

13

Area - Industrial or academic area of the corresponding application
Name - Name of the application used in the Reference
Solution - Quality of the solution obtained by MIDACO
n - Number of decision variables in total of the application
nint - Number of integer decision variables of the application
m - Number of constraints in total of the application
meq - Number of equality constraints of the application
Reference - Literature or (web-) reference for the application

Table 8: Real world applications solved by MIDACO (with published solutions)
Area Name Solution n nint m meq Reference

Chem. Eng. TEP best 43 7 11 1 [20]
Chem. Eng. WWT.COST.1 best 4 0 0 0 [20]
Chem. Eng. WWT.COST.2 best 8 0 0 0 [20]
Chem. Eng. WWT.COST.3 best 13 1 0 0 [20]
Chem. Eng. TP4 *new* best 52 2 38 35 [21]
Chem. Eng. TP5 *new* best 113 3 71 67 [21]

Space GTOC1 *new* best 8 0 6 0 [7]
Space Cassini2 *new* best 22 0 0 0 [7]
Space Satellite first solution 5 2 1 0 [22]

Aero Space Heat Shield *new* best 31 11 2 0 [19]
Aero Space F8-Aircraft best 6 0 183 3 [21]
Robotics Camera first solution 45 0 6 6 [13]

The solution qualities referred to in Table 8 illustrate the potential of MIDACO. In most cases
the best known or even a new best known solution could be achieved. The application in Table
8 do also include purely continuous optimization (NLP) problems. As the MIDACO algorithm
is constructed for general MINLP problems, it can also be applied on this kind of optimization
problems. The results on the space applications (GTOC1 and Cassini2), which are known to be
difficult, indicate, that MIDACO can be a promising choice for NLP problems as well.

5 Conclusions

For the first time, a purely stochastic algorithm for MINLP (named MIDACO) was numerically
evaluated on a comprehensive set of 100 benchmark problems. The extensive numerical results
revealed the strength of MIDACO in terms of robustness, global optimality and reasonable cpu-
runtime performance (see Table 2). The comparison with results by several established MINLP
software (see Table 1 and Table 5) showed, that MIDACO is able to significantly outperform
those regarding the number of global optimal solutions obtained. Even though MIDACO requires
many function evaluation (due to its stochastic nature), it can still be faster than other MINLP
software, if problem function evaluation are computational inexpensive (see Table 1, Table 2 and
Table 5). The platform independent (massive) parallelization feature of MIDACO enables the
software to be even promising on cpu time expensive applications (see Table 4). Furthermore the
black-box capabilities of MIDACO due offer an intriguing advantage over deterministic MINLP
solvers, that require gradients or smooth function properties. In conclusion, MIDACO is considered
an innovative and powerful new software for MINLP, available in several major programming
languages.

14

Acknowledgments

The authors would like to thank K. Schittkowski, O. Exler and T. Lehmann for generously pro-
viding the test set of MINLP benchmarks and many supportive help. Special thanks go to K.
Schittkowski for inspiring important implementation features like the reverse communication and
the parallelization option for MIDACO. The development has been supported by the project ”Non-
linear mixed-integer-based Optimisation Technique for Space Applications” (ESTEC/Contract No.
21943/08/NL/ST) co-funded by ESA Networking Partnership Initiative, Astrium Limited (Steve-
nage, UK) and the School of Mathematics, University of Birmingham, UK.

6 Appendix A

Individual results by MIDACO for a test run on the set of 100 non-convex MINLP benchmarks
provided by Schittkowski [15] are reported. Table 9 lists the individual benchmark names as
reported in [15] and addresses a library number to them.

Table 9: Benchmark names with corresponding library number
1 MITP1 26 NVS09 51 FLOUDAS5 76 ST TEST2
2 QIP1 27 NVS10 52 FLOUDAS6 77 ST TEST3
3 MITP2 28 NVS11 53 OAER 78 ST TEST4
4 ASAADI11 29 NVS12 54 SPRING 79 ST TEST5
5 ASAADI12 30 NVS13 55 GEAR 80 ST TEST6
6 ASAADI21 31 NVS14 56 DAKOTA 81 ST TEST8
7 ASAADI22 32 NVS15 57 GEAR4 82 ST TESTGR1
8 ASAADI31 33 NVS16 58 GEAR3 83 ST TESTGR3
9 ASAADI32 34 NVS17 59 EX1252A 84 ST TESTPH4

10 DIRTY 35 NVS18 60 EX1263A 85 TLN2
11 BRAAK1 36 NVS19 61 EX1264A 86 TLN4
12 BRAAK2 37 NVS20 62 EX1265A 87 TLN5
13 BRAAK3 38 NVS21 63 EX1266A 88 TLN6
14 DEX2 39 NVS22 64 DU OPT5 89 PROB02
15 CROP5 40 NVS23 65 DU OPT 90 TLOSS
16 TP83 41 NVS24 66 ST E32 91 TLTR
17 WP02 42 GEAR3A 67 ST E36 92 ALAN
18 NVS01 43 WINDFAC 68 ST E38 93 MEANVARX
19 NVS02 44 DG1 69 ST E40 94 HMITTELMANN
20 NVS03 45 DG2 70 ST MIQP1 95 MIP EX
21 NVS04 46 DG3 71 ST MIQP2 96 MGRID CYCLES1
22 NVS05 47 FLOUDAS1 72 ST MIQP3 97 MGRID CYCLES2
23 NVS06 48 FLOUDAS2 73 ST MIQP4 98 CROP20
24 NVS07 49 FLOUDAS3 74 ST MIQP5 99 CROP50
25 NVS08 50 FLOUDAS4 75 ST TEST1 100 CROP100

Based on the results of Table 2 (where 10 different runs on the full library where performed) the
random Seed 2.2 was fixed to 9, which represents a good MIDACO performance. A maximal
time budget of 300 seconds (5 minutes) has been assigned (instead of 1000 seconds like in Section
3.2). Besides the cpu time budget, the success criteria (2) in finding a global optimal solution was
applied with ε = acc = 0.0001. Table 10 lists the individual results, the abbreviations used are as
follows:

15

Flag - Symbol indicating a local (-), false (x) or better (o) solution
Nr. - MINLP problem number from the library
Eval - Number of function evaluation used by MIDACO
Time - Cpu time in seconds used by MIDACO
n - Number of decision variables in total of the problem
nint - Number of integer decision variables of the problem
m - Number of constraints in total of the problem
meq - Number of equality constraints of the problem
f(x∗, y∗) - Global (or best known) optimal objective function value
f(x, y) - Best (feasible) objective function value obtained by MIDACO
V iolation - Constraint violation measured as L∞-norm over all violations

16

Table 10: Individual MIDACO results on 100 MINLP problems
Flag Nr. Eval T ime n nint m meq f(x∗, y∗) f(x, y) V iolation

1 3705 0.0 5 3 1 0 -10009.6900 -9916.3953 0.0000000000
2 6 0.0 4 4 4 0 -20.0000 -20.0000 0.0000000000
3 20727 0.0 5 3 7 0 3.5000 3.5026 0.0000000000
4 13798 0.0 4 3 3 0 -40.9566 -40.6317 0.0000000000
5 59 0.0 4 4 3 0 -38.0000 -38.0000 0.0000000000
6 4242 0.0 7 4 4 0 694.9027 696.3917 0.0000000000
7 89 0.0 7 7 4 0 700.0000 700.0000 0.0000000000
8 24443 0.0 10 6 8 0 37.2195 37.5528 0.0000000000
9 717 0.0 10 10 8 0 43.0000 43.0000 0.0000000000

10 80 0.0 25 13 10 0 -304723942.9203 -301895650.3390 0.0000000000
11 31677 0.1 7 3 2 0 1.0000 1.0059 0.0000000000
12 27922 0.0 7 3 4 0 -2.7183 -2.6941 0.0000000000
13 96735 0.1 7 3 4 0 -8980002.7000 -8948767.1685 0.0000000000
14 1 0.0 2 2 2 0 -56.9375 -56.9375 0.0000000000
15 228 0.0 5 5 3 0 0.1004 0.1004 0.0000000000
16 6247 0.0 5 2 6 0 -30665.5387 -30372.7513 0.0000000000
17 13 0.0 2 1 2 0 -2.4444 -2.4368 0.0000000000
18 472043 0.7 3 2 3 1 12.4697 12.4697 0.0000863230
19 465482 0.6 8 5 3 3 5.9642 6.0164 0.0000615147
20 35 0.0 2 2 2 0 16.0000 16.0000 0.0000000000
21 58 0.0 2 2 0 0 0.7200 0.7200 0.0000000000

- 22 245937264 300.0 8 2 9 4 5.4709 29.4678 0.0000884825
23 43 0.0 2 2 0 0 1.7703 1.7703 0.0000000000
24 311 0.0 3 3 2 0 4.0000 4.0000 0.0000000000
25 8188 0.0 3 2 3 0 23.4497 23.6467 0.0000000000
26 148 0.0 10 10 0 0 -43.1343 -43.1343 0.0000000000
27 41 0.0 2 2 2 0 -310.8000 -310.8000 0.0000000000
28 113 0.0 3 3 3 0 -431.0000 -427.8000 0.0000000000
29 119 0.0 4 4 4 0 -481.2000 -481.2000 0.0000000000
30 159 0.0 5 5 5 0 -585.2000 -582.8000 0.0000000000
31 41158 0.1 8 5 3 3 -40358.1500 -40256.3555 0.0000456870
32 157 0.0 3 3 1 0 1.0000 1.0000 0.0000000000
33 17 0.0 2 2 0 0 0.7031 0.7031 0.0000000000
34 278 0.0 7 7 7 0 -1100.4000 -1093.0000 0.0000000000
35 165 0.0 6 6 6 0 -778.4000 -772.4000 0.0000000000
36 259 0.0 8 8 8 0 -1098.4000 -1088.6000 0.0000000000
37 197257 0.4 16 5 8 0 230.9222 233.1332 0.0000000000
38 5690 0.0 3 2 2 0 -5.6848 -5.6746 0.0000000000
39 533239 0.7 8 4 9 4 6.0582 6.0582 0.0000880749
40 620 0.0 9 9 9 0 -1125.2000 -1114.4000 0.0000000000
41 405 0.0 10 10 10 0 -1033.2000 -1023.0000 0.0000000000
42 70829 0.1 8 4 4 4 1.0000 1.0024 0.0000218749
43 11231785 18.5 14 3 13 13 0.2545 0.2543 0.0000833918
44 79347 0.1 6 3 6 0 6.0097 6.0536 0.0000000001
45 40632 0.1 11 5 14 1 73.0357 73.7594 0.0000800100
46 149590 0.3 17 8 23 2 68.0100 68.6351 0.0000834528
47 185537 0.2 5 3 5 2 7.6672 7.6672 0.0000888507
48 30249 0.0 3 1 3 0 1.0765 1.0820 0.0000959807
49 197477 0.2 7 4 9 0 4.5796 4.6250 0.0000000000
50 13470477 18.7 11 8 7 3 -0.9435 -0.9435 0.0000843793

17

Table 11: Individual MIDACO results on 100 MINLP problems (continued)
Flag Nr. Eval T ime n nint m meq f(x∗, y∗) f(x, y) V iolation

51 150 0.0 2 2 4 0 31.0000 31.0000 0.0000000000
52 1222 0.0 2 1 3 0 -17.0000 -16.8306 0.0000000000
53 126780 0.2 9 3 7 3 -1.9231 -1.9191 0.0000401917
54 1204227 2.3 18 12 8 5 0.8462 0.8436 0.0000995025
55 3 0.0 4 4 0 0 1.0000 1.0021 0.0000000000
56 13930 0.0 4 2 2 0 1.3634 1.3726 0.0000000000
57 11501 0.0 6 4 1 1 1.0000 1.0003 0.0000775729
58 70829 0.1 8 4 4 4 1.0000 1.0024 0.0000218749

- 59 120829756 300.0 24 9 34 13 128918.0000 134407.2581 0.0000996744
60 6119043 18.5 24 24 35 0 19.6000 19.6000 0.0000000000
61 6431077 19.3 24 24 35 0 8.6000 8.6000 0.0000000000
62 40895454 146.9 35 35 44 0 10.3000 10.3000 0.0000000000
63 5975068 23.9 48 48 53 0 16.3000 16.3000 0.0000000000
64 184918 1.1 20 13 9 0 8.4806 8.5625 0.0000000000
65 206575 1.7 20 13 9 0 3.5392 3.5501 0.0000000000

x 66 87406151 300.0 35 19 18 17 -1.4304 -1.4365 0.0203979103
67 69575 0.1 2 1 2 1 -246.0000 -243.8568 0.0000393151
68 3718 0.0 4 2 3 0 7197.7271 7203.1783 0.0000053846
69 15886 0.0 4 3 5 1 28.2426 28.4142 0.0000312663
70 28 0.0 5 5 1 0 281.0000 281.0000 0.0000000000
71 4628 0.0 4 4 3 0 2.0000 2.0000 0.0000000000
72 21236 0.0 2 2 1 0 -6.0000 -6.0000 0.0000000000
73 50668 0.1 6 3 4 0 -4574.0000 -4532.5531 0.0000000000
74 205239 0.3 7 2 13 0 -333.8900 -333.7328 0.0000901816
75 111 0.0 5 5 1 0 -4500.0000 -4497.5000 0.0000000000
76 267 0.0 6 6 2 0 -9.2500 -9.2500 0.0000000000
77 116161 0.3 13 13 10 0 -7.0000 -7.0000 0.0000000000
78 70826 0.1 6 6 5 0 -7.0000 -7.0000 0.0000000000
79 471 0.0 10 10 11 0 -110.0000 -110.0000 0.0000000000
80 96 0.0 10 10 5 0 471.0000 471.0000 0.0000000000
81 343156 1.0 24 24 20 0 -29605.0000 -29311.0000 0.0000000000
82 3139 0.0 10 10 5 0 -12.8116 -12.6946 0.0000000000
83 123064 0.3 20 20 20 0 -20.5900 -20.3932 0.0000000000
84 144 0.0 3 3 10 0 -80.5000 -80.5000 0.0000000000
85 78 0.0 8 8 12 0 2.3000 2.3000 0.0000000000
86 3236690 9.3 24 24 24 0 8.3000 8.3000 0.0000000000
87 15715534 53.8 35 35 30 0 10.3000 10.4000 0.0000000000
88 26157808 97.3 48 48 36 0 14.6000 14.7000 0.0000000000
89 7268 0.0 6 6 8 0 112235.0000 112235.0000 0.0000000000
90 4585740 18.4 48 48 53 0 16.3000 16.3000 0.0000000000
91 398513 1.6 48 48 54 0 48.0667 48.0667 0.0000000000
92 306034 0.4 8 4 7 2 2.9250 2.9262 0.0000379279
93 3132273 10.9 35 14 44 8 14.1897 14.3309 0.0000990643
94 232 0.0 16 16 7 0 13.0000 13.0000 0.0000000000
95 24412 0.0 5 3 7 0 3.5000 3.5177 0.0000000000
96 94 0.0 5 5 1 0 8.0000 8.0000 0.0000000000
97 38993 0.1 10 10 1 0 300.0000 302.0000 0.0000000000
98 81355 0.4 20 20 3 0 0.1318 0.1329 0.0000000000
99 129314 1.4 50 50 3 0 0.4052 0.4090 0.0000000000

100 599873 12.1 100 100 3 0 1.0973 1.0975 0.0000000000

18

Table 12: Summary of results presented in Table 10
Global optimal Solutions : 97
Feasible Solutions : 99
Local Solution (-) : 2
False Solution (x) : 1
Better Solution (o) : 0
Average Evaluation : 1485525
Average Time : 4.82
Total Time : 1363.2 [Hour: 0, Min:22, Sec:43]

7 Appendix B

Individual results by the MINLP solvers BONMIN [4], COUENNE [5] and MIDACO for a set of 66
MINLP problems form the GAMS MINLPlib [9] are presented. A maximal cpu time budget of 300
seconds has been applied to all solvers for each instance. In case of MIDACO the automatic stop-
ping criteria (see Section 3.3) was activated (using Autostop = 50). For BONMIN and COUENNE
only one test run for every problem was performed, using the pre-defined starting point from the
GAMS MINLPlib. MIDACO was tested 10 times with a different random seed on every instance.
Therefore in case of MIDACO the number of global optimal (Optimal) and feasible (Feasible)
solutions is reported as a fraction, where the numerator denotes the number of successful runs
out of all 10 runs, for every problem. In case BONMIN and COUENNE did not reach the global
optimal solution on an instance, the sub-optimal objective function value is reported in brackets.
More details on the individual problems (in esp. the global optimal objective function value) can
be found in Table 10. A summary of the individual results presented in Table 13 can be found in
Section 3.5 Table 5.

19

Table 13: Individual results by BONMIN, COUENNE and MIDACO on 66 MINLP problems
Problem Solver Optimal Feasible T ime
NVS01 BONMIN Yes Yes 0.79

COUENNE No (12.8817) Yes 0.45
MIDACO 9/10 10/10 0.90

NVS02 BONMIN Yes Yes 0.81
COUENNE Yes Yes 0.05
MIDACO 10/10 10/10 4.83

NVS03 BONMIN Yes Yes 0.47
COUENNE Yes Yes 0.03
MIDACO 10/10 10/10 0.09

NVS04 BONMIN Yes Yes 0.55
COUENNE Yes Yes 0.14
MIDACO 10/10 10/10 0.08

NVS05 BONMIN Yes Yes 3.25
COUENNE Yes Yes 39.11
MIDACO 0/10 10/10 290.37

NVS06 BONMIN Yes Yes 0.20
COUENNE Yes Yes 0.03
MIDACO 10/10 10/10 0.11

NVS07 BONMIN Yes Yes 0.19
COUENNE Yes Yes 0.06
MIDACO 10/10 10/10 0.17

NVS08 BONMIN Yes Yes 0.29
COUENNE No (29.0) Yes 0.08
MIDACO 10/10 10/10 0.60

NVS09 BONMIN Yes Yes 0.11
COUENNE Yes Yes 0.12
MIDACO 10/10 10/10 0.52

NVS10 BONMIN Yes Yes 0.17
COUENNE Yes Yes 0.08
MIDACO 10/10 10/10 0.09

NVS11 BONMIN Yes Yes 0.17
COUENNE No (-426.6) Yes 0.08
MIDACO 10/10 10/10 0.15

NVS12 BONMIN Yes Yes 0.19
COUENNE No (-473.2) Yes 0.42
MIDACO 10/10 10/10 0.21

NVS13 BONMIN Yes Yes 0.27
COUENNE Yes Yes 1.32
MIDACO 10/10 10/10 0.27

NVS14 BONMIN Yes Yes 0.89
COUENNE Yes Yes 0.08
MIDACO 10/10 10/10 2.54

NVS15 BONMIN Yes Yes 0.22
COUENNE Yes Yes 0.06
MIDACO 10/10 10/10 0.13

NVS16 BONMIN Yes Yes 0.25
COUENNE Yes Yes 0.08
MIDACO 10/10 10/10 0.08

NVS17 BONMIN Yes Yes 0.45
COUENNE No (-1096.8) Yes 124.81
MIDACO 10/10 10/10 0.58

NVS18 BONMIN Yes Yes 0.44
COUENNE No (-745.4) Yes 300.00
MIDACO 10/10 10/10 0.44

NVS19 BONMIN Yes Yes 1.38
COUENNE - No 300.00
MIDACO 10/10 10/10 0.74

NVS20 BONMIN No (241.4073) Yes 0.67
COUENNE Yes Yes 5.79
MIDACO 10/10 10/10 86.36

NVS21 BONMIN Yes Yes 0.79
COUENNE Yes Yes 0.18
MIDACO 7/10 10/10 0.61

NVS22 BONMIN Yes Yes 1.03
COUENNE Yes Yes 0.19
MIDACO 10/10 10/10 4.78

20

Table 14: Continuation of Table 13
Problem Solver Optimal Feasible T ime
NVS23 BONMIN No (-1113.8) Yes 0.58

COUENNE No (-1104.4) Yes 300.00
MIDACO 10/10 10/10 0.95

NVS24 BONMIN No (-1031.8) Yes 0.52
COUENNE - No 300.00
MIDACO 10/10 10/10 1.29

WINDFAC BONMIN Yes Yes 0.43
COUENNE Yes Yes 0.61
MIDACO 1/10 10/10 43.87

OAER BONMIN Yes Yes 0.21
COUENNE Yes Yes 0.12
MIDACO 10/10 10/10 9.92

SPRING BONMIN Yes Yes 1.25
COUENNE Yes Yes 0.89
MIDACO 10/10 10/10 137.90

GEAR BONMIN Yes Yes 0.56
COUENNE Yes Yes 0.09
MIDACO 10/10 10/10 0.13

GEAR3 BONMIN Yes Yes 0.85
COUENNE Yes Yes 0.13
MIDACO 10/10 10/10 4.51

GEAR4 BONMIN Yes Yes 300.00
COUENNE Yes Yes 1.79
MIDACO 10/10 10/10 1.71

EX1252A BONMIN No (134471.5605) Yes 9.13
COUENNE Yes Yes 8.67
MIDACO 0/10 2/10 300.00

EX1263A BONMIN No (21.3) Yes 6.69
COUENNE No (21.3) Yes 1.09
MIDACO 3/10 10/10 11.12

EX1264A BONMIN No (9.3) Yes 10.86
COUENNE No (9.0) Yes 1.53
MIDACO 2/10 10/10 5.94

EX1265A BONMIN No (11.3) Yes 17.53
COUENNE No (10.6) Yes 4.24
MIDACO 1/10 10/10 11.09

EX1266A BONMIN Yes Yes 15.67
COUENNE Yes Yes 1.67
MIDACO 5/10 10/10 38.39

DU OPT5 BONMIN No (8.3266) Yes 2.58
COUENNE No (10.8967) Yes 300.00
MIDACO 10/10 10/10 106.31

DU OPT BONMIN Yes Yes 2.07
COUENNE No (9.3672) Yes 300.00
MIDACO 4/10 10/10 206.63

ST E32 BONMIN Yes Yes 1.45
COUENNE Yes Yes 21.06
MIDACO 0/10 0/10 300.00

ST E36 BONMIN Yes Yes 0.20
COUENNE Yes Yes 0.18
MIDACO 4/10 10/10 0.54

ST E38 BONMIN Yes Yes 0.13
COUENNE Yes Yes 0.11
MIDACO 10/10 10/10 1.07

ST E40 BONMIN - No 0.04
COUENNE Yes Yes 0.32
MIDACO 10/10 10/10 0.46

ST MIQP1 BONMIN Yes Yes 0.37
COUENNE Yes Yes 0.06
MIDACO 10/10 10/10 0.15

ST MIQP2 BONMIN Yes Yes 0.53
COUENNE Yes Yes 0.08
MIDACO 10/10 10/10 0.50

ST MIQP3 BONMIN Yes Yes 0.17
COUENNE Yes Yes 0.06
MIDACO 10/10 10/10 0.41

21

Table 15: Continuation of Table 13
Problem Solver Optimal Feasible T ime
ST MIQP4 BONMIN Yes Yes 0.25

COUENNE Yes Yes 0.06
MIDACO 5/10 10/10 2.62

ST MIQP5 BONMIN Yes Yes 0.17
COUENNE Yes Yes 0.09
MIDACO 10/10 10/10 6.51

ST TEST1 BONMIN Yes Yes 0.33
COUENNE Yes Yes 0.09
MIDACO 10/10 10/10 0.51

ST TEST2 BONMIN Yes Yes 0.12
COUENNE Yes Yes 0.06
MIDACO 10/10 10/10 0.61

ST TEST3 BONMIN Yes Yes 0.76
COUENNE Yes Yes 0.08
MIDACO 10/10 10/10 3.13

ST TEST4 BONMIN - No 0.03
COUENNE Yes Yes 0.06
MIDACO 10/10 10/10 1.04

ST TEST5 BONMIN Yes Yes 1.29
COUENNE Yes Yes 0.23
MIDACO 10/10 10/10 0.41

ST TEST6 BONMIN Yes Yes 0.83
COUENNE Yes Yes 0.11
MIDACO 10/10 10/10 0.41

ST TEST8 BONMIN No (-29575.0) Yes 0.11
COUENNE Yes Yes 0.14
MIDACO 10/10 10/10 11.35

ST TESTGR1 BONMIN No (-12.7758) Yes 0.78
COUENNE No (-12.7842) Yes 0.08
MIDACO 10/10 10/10 1.07

ST TESTGR3 BONMIN No (-19.9724) Yes 0.14
COUENNE No (-20.4910) Yes 0.07
MIDACO 8/10 10/10 6.15

ST TESTPH4 BONMIN Yes Yes 0.16
COUENNE Yes Yes 0.06
MIDACO 10/10 10/10 0.16

TLN2 BONMIN Yes Yes 5.44
COUENNE Yes Yes 0.11
MIDACO 10/10 10/10 0.66

TLN4 BONMIN No (8.5) Yes 140.56
COUENNE Yes Yes 37.02
MIDACO 2/10 10/10 5.20

TLN5 BONMIN No (10.9) Yes 300.00
COUENNE No (10.6) Yes 300.00
MIDACO 1/10 10/10 13.27

TLN6 BONMIN No (19.0) Yes 300.00
COUENNE No (15.8) Yes 300.00
MIDACO 0/10 10/10 54.03

PROB02 BONMIN Yes Yes 0.14
COUENNE Yes Yes 0.09
MIDACO 10/10 10/10 0.68

TLOSS BONMIN Yes Yes 20.98
COUENNE Yes Yes 4.74
MIDACO 3/10 10/10 33.29

TLTR BONMIN Yes Yes 20.25
COUENNE Yes Yes 2.84
MIDACO 10/10 10/10 45.40

ALAN BONMIN Yes Yes 0.29
COUENNE Yes Yes 0.23
MIDACO 10/10 10/10 7.93

MEANVARX BONMIN No (14.5147) Yes 0.22
COUENNE Yes Yes 1.91
MIDACO 9/10 10/10 300.00

HMITTELMANN BONMIN Yes Yes 9.38
COUENNE Yes Yes 0.36
MIDACO 10/10 10/10 0.74

22

References

[1] G.E.P. Box and M.E. Muller, A Note on the Generation of Random Normal Deviates, Ann.
Math. Statist. 29(2) (1958), pp. 610–611

[2] C. Blum, Ant colony optimization: Introduction and recent trends, Phys. Life Rev. 2(4) (2005),
pp. 353 – 373

[3] M.R. Bussieck and S. Vigerske, MINLP Solver Software, J.J. Cochran, L.A. Cox, P. Ke-
skinocak, J.P. Kharoufeh and J.C. Smith, Wiley Encyclopedia of Operations Research and
Management Science, John Wiley and Sons, Inc., New York, 2010

[4] COIN-OR (Project Manager P. Bonami), Basic Open-source Nonlinear Mixed INteger pro-
gramming ; software available at http://www.coin-or.org/Bonmin/

[5] COIN-OR (Project Manager P. Belotti), Convex Over and Under ENvelopes for Nonlinear
Estimation; software available at http://www.coin-or.org/Couenne/

[6] M. Dorigo and T. Stuetzle, Ant Colony Optimization, MIT Press, Cambridge, 2004

[7] European Space Agency (ESA) and Advanced Concepts Team (ACT), GTOP Database -
Global Optimisation Trajectory Problems and Solutions; software available at http://www.

esa.int/gsp/ACT/inf/op/globopt.htm

[8] O. Exler, T. Lehmann and K. Schittkowski, A Comparative Study of SQP-Type Algorithms for
Nonlinear and Nonconvex Mixed-Integer Optimization, preprint (2010), submitted for publi-
cation. Available at http://www.ai7.uni-bayreuth.de/minlp_comp_study.htm

[9] GAMS MINLPlib - A collection of Mixed Integer Nonlinear Programming models. Washington,
DC, USA; software available at http://www.gamsworld.org/minlp/minlplib.htm

[10] Matt Saltzman: Informs 2010 Annual Meeting Blogposts. Austin, Texas, USA. Available at
http://meetings2.informs.org/Austin2010/blog/?p=88

[11] GAMS (General Algebraic Modeling System). Washington, DC, USA; software available at
http://www.gams.com/

[12] I.E. Grossmann, Review of Nonlinear Mixed-Integer and Disjunctive Programming Techniques,
Optim. Eng. 3(3) (2002), pp. 227–252

[13] M. Hänel, S. Kuhn, D. Henrich, L. Grüne, and J. Pannek, Optimal Camera Placement to
measure Distances Conservativly Regarding Static and Dynamic Obstacles, preprint (2011).
Available at http://arxiv.org/abs/1105.3270

[14] G. Marsaglia, Xorshift RNGs, J. Stat. Softw. 8(14) (2003), pp. 1–6

[15] K. Schittkowski, A Collection of 100 Test Problems for Nonlinear Mixed-Integer Programming
in Fortran (User Guide), Report, Department of Computer Science, University of Bayreuth,
Bayreuth, 2009

[16] K. Schittkowski, NLPQLP - A Fortran implementation of a sequential quadratic programming
algorithm with distributed and non-monotone line search (User Guide), Report, Department
of Computer Science, University of Bayreuth, Bayreuth, 2009

[17] K. Socha, ACO for Continuous and Mixed-Variable Optimization, Lect. Notes Comput. Sc.
Vol. 3172, Springer, Berlin, 2004, pp. 25–36

[18] K. Socha and M. Dorigo, Ant colony optimization for continuous domains, Eur. J. Oper. Res.
85(2008), pp. 1155–1173

[19] M. Schlüter, J.A. Egea and J.R. Banga, Extended antcolony optimization for non-convex mixed
integer nonlinear programming, Comput. Oper. Res. 36(7) (2009), pp. 2217–2229

23

http://www.coin-or.org/Bonmin/
http://www.coin-or.org/Couenne/
http://www.esa.int/gsp/ACT/inf/op/globopt.htm
http://www.esa.int/gsp/ACT/inf/op/globopt.htm
http://www.ai7.uni-bayreuth.de/minlp_comp_study.htm
http://www.gamsworld.org/minlp/minlplib.htm
http://meetings2.informs.org/Austin2010/blog/?p=88
http://www.gams.com/
http://arxiv.org/abs/1105.3270

[20] M. Schlüter, J.A. Egea, L.T. Antelo, A.A. Alonso and J.R. Banga, An extended ant colony
optimization algorithm for integrated process and control system design, Ind. Eng. Chem.
48(14) (2009), pp. 6723–6738

[21] M. Schlüter and M. Gerdts, The Oracle Penalty Method, J. Global Optim. 47(2) (2010), pp.
293–325

[22] A.T. Takano and B.G. Marchand, Optimal Constellation Design for Space Based Situa-
tional Awareness Applications, Astrodynamics Specialists Conference (AAS/AIAA), Paper
No. AAS11-543, Girdwood, AK, 2011. Available at http://www.ae.utexas.edu/~marchand/
AAS11-543.pdf

[23] A. Törn and A. Zilinskas, Global Optimization, Lect. Notes Comput. Sc. Vol. 350, Springer,
1989

[24] Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly and R. Marti, Scatter Search and Local
NLP Solvers: A Multistart Framework for Global Optimization, Informs J. Comput. 19(3)
(2007), pp. 328–340

[25] K. Weierstrass, Abhandlungen aus der Functionenlehre, Julius Springer, Berlin (1886)

24

http://www.ae.utexas.edu/~marchand/AAS11-543.pdf
http://www.ae.utexas.edu/~marchand/AAS11-543.pdf

	Introduction
	The MIDACO Software
	Reverse Communication and Distributed Computing
	Parameters and Print Options

	Numerical Results
	Performance of SQP-based Algorithms
	MIDACO Performance on 100 MINLP Benchmarks
	The Automatic Stopping Criteria
	The Impact of Parallelization
	A Note on Computational Expensive Applications

	Comparison with BONMIN and COUENNE on GAMS benchmarks
	Test Problems with Critical Function Properties

	Real World Applications
	Conclusions
	Appendix A
	Appendix B

