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Abstract

A new and universal penalty method is introduced in this contribution. It is especially
intended to be applied in stochastic metaheuristics like genetic algorithms, particle swarm
optimization or ant colony optimization. The novelty of this method is, that it is an advanced
approach that only requires one parameter to be tuned. Moreover this parameter, named
oracle, is easy and intuitive to handle.

A pseudo-code implementation of the method is presented together with numerical results
on a set of 60 constrained benchmark problems from the open literature. The results are
compared with those obtained by common penalty methods, revealing the strength of the
proposed approach.

Further results on three real-world applications are briefly discussed and fortify the prac-
tical usefulness and capability of the method.

Keywords: Constrained optimization, Global optimization, Penalty function, Stochastic
metaheuristic, Ant colony optimization, MIDACO - Solver, Mixed integer nonlinear program-
ming (MINLP).

1 Introduction

Constraints play an important role in the field of optimization and arise in many real-world appli-
cations. In general, a constrained optimization problem can be described as follows:

Minimize f(x),

subject to: gi(x) = 0, i = 1, ...,meq ∈ N,
gi(x) ≥ 0, i = meq + 1, ...,m ∈ N,

(1)

where x = (x1, ..., xn) is the vector of decision variables of an n ∈ N dimensional search space (e.g.
Rn). The objective function f(x) has to be minimized respectively to meq equality constraints
g1, ..., gmeq and m−meq inequality constraints gmeq+1, ..., gm. It is to note that, alternatively, any
equality constraint can be formulated by two inequality constraints.

Penalty methods are a well known technique to handle constrained optimization problems. Those
functions transform a constrained problem into an unconstrained one by adding a penalty term to
the original objective function. In particular, this approach to handle constraints is the most pop-
ular one among stochastic metaheuristics like genetic algorithms [15], particle swarm optimization
[22], simulated annealing [23], scatter search [16] or ant colony optimization [6].
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The big advantage of penalty methods is their simplicity and simple implementation. On the other
side, simple penalty methods often perform very poorly on challenging constrained optimization
problems, while more sophisticated ones normally require an additional tuning of many parameters
to gain a sufficient performance. The burden of a good parameter selection for advanced penalty
functions is a well known problem (see Coello Coello [3] or Yeniay [33]).

In this paper a conceptual new penalty method, named oracle penalty method, is presented. A
slightly modified version of this method can be found in the previous works [29] and [30]. While
no further explanations on the development of the methodology or the comparison with other
penalty methods can be found there, those explanations and investigations are carried out in this
contribution now.

The here proposed method is universal as it is applicable to any kind of optimization algorithm.
While proper penalty functions for deterministic algorithms already exist and this method is of
heuristic nature itself, it is especially intended to be employed in stochastic metaheuristics like
the ones mentioned above. Moreover, the oracle penalty method aims at finding global optimal
solutions, whereas several optimization runs might be required to adjust the one parameter required
by the method. As stochastic metaheuristics normally also aim at finding global or nearly global
solutions and often require several optimization runs due to their stochastic nature, the method
seems very suitable for such kind of algorithms.

The name of the method is deduced from the predictive nature of its parameter, named oracle.
This parameter directly corresponds to the global optimal (feasible) objective function value of a
given problem and selecting an oracle parameter can therefore be seen as some kind of forecast.
Even so there is no other parameter involved in the method than the oracle, it is still considered
an advanced approach, absolutely competitive with other penalty functions commonly used in
stochastic metaheuristics.

The paper is structured as follows: Firstly we analyze three common examples of penalty methods
taken from the literature. Secondly, the key idea of the oracle method is developed introducing
a basic version of the oracle penalty method. This basic version obviously lacks of robustness
regarding the parameter selection. To strengthen the method regarding the parameter selection,
three extensions for the basic version are carried out and explained in detail. These modifications
finally lead to the extended oracle penalty function. An example of a pseudo-code implementa-
tion of the extended version together with a parameter update rule completes the discussion on
the oracle penalty method. Thirdly, numerical results for 60 MINLP benchmark problems from
the open literature are presented. Results obtained by the extended oracle penalty function are
compared to those achieved by the penalty methods presented in section 1.1. Further results on
three different real-world applications are presented. Finally, some conclusions are drawn.

1.1 Examples of common penalty methods

Three common penalty methods are presented and briefly analyzed now. The formulations pre-
sented here follow the concept of a residual function res(x) used to measure the feasibility of an
iterate x to problem (1). A residual function measures the constraint violations by applying a
norm function over all m constraint violations of problem (1). This approach is commonly used
and some explicit residual functions based on the l1, l2 and l∞ norm are listed in Table 1. It is to
note, that any feasible iterate x will correspond to a residual function value of zero.

Table 1: Examples of residual functions
Norm residual function res(x) for an iterate x

l1 res(x) =
∑meq

i=1 |gi(x)| −
∑m

i=meq+1 min{0, gi(x)}

l2 res(x) =
√∑meq

i=1 |gi(x)|2 +
∑m

i=meq+1 min{0, gi(x)}2

l∞ res(x) = max{ |gi(x)|i=1,...,meq , |min{0, gi(x)}i=meq+1,...,m|}
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Table 2 lists formulations of the death, static and adaptive penalty function p(x) for an iterate x
to problem (1) using a residual function res(x). The last column of Table 2 contains the specific
parameters, required by the corresponding penalty function.

Table 2: Examples of common penalty functions
Name Penalty function p(x) for an iterate x Parameters

death p(x) =

{
f(x) , if res(x) = 0
∞ , if res(x) > 0

none

static p(x) = f(x) +K · res(x) K

adaptive p(x) = f(x) + λ(t) · res(x) λ(1), β1, β2, k

λ(t+ 1) =

 (1/β1) · λ(t) , if case#1
β2 · λ(t) , if case#2
λ(t) , otherwise

case#1: The best individuals during the last
k generations have been always feasible.

case#2: The best individuals during the last
k generations have been never feasible.

The death penalty function is clearly the simplest penalty function possible. Any infeasible iterate
will be penalized with infinity, while any feasible iterate is penalized with its objective function
value. The main advantage of this method is the lack of any parameter, the main drawback is the
inability to explore any infeasible region of the search space. Obviously this method can not be
suitable for any challenging constrained optimization problem, where feasible iterates are difficult
to find. Further information on this method can be found for example in Coit and Smith [4] or
Michalewicz [26].

The static penalty function is a sum of the objective function and the residual function multiplied
by the parameter K. This parameter is assumed to be quite large (e.g. 109) and enables the
method to explore infeasible search regions. Even so this method seems to be already much more
advanced than the death penalty function, it already comes with the drawback of one parameter
to be selected. Further information on this method can be found for example in Homaifar et al.
[20] or Kuri Morales and Villegas Quezada [25].

The adaptive penalty function is the sum of the objective function and the residual function
multiplied by a dynamic factor λ(t), which is updated for every generation t. Based on the progress
of the algorithm in either finding feasible iterates (case#2) or improve feasible iterates (case#1),
this factor increases or decreases the weight on the residual function in the penalty function. As
this penalty function is able to dynamically adapt itself on the current progress of the algorithm,
this approach seems suitable for challenging constrained problems. Nevertheless, requiring four
parameters to be set in advance, this penalty function claims a lot of optimization effort itself.
Further information on this method can be found for example in Hadj-Alouane and Bean [19] or
Smith and Tate [32].

2 Oracle penalty method

In this section the oracle penalty method is described in detail. At first a basic version of the
method is explained and modifications are developed which lead to an extended version. This
extended version is robust enough to be applied on any general constrained optimization problem.
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An example of an implementation together with an update rule for the oracle parameter complete
this section.

2.1 Basic oracle penalty function

The key idea of the oracle penalty method is a transformation of the objective function f(x) of
problem (1) into an additional equality constraint g0(x) = f(x)− Ω = 0, where Ω is a parameter,
named oracle. An objective function is redundant in the transformed problem definition and might
be declared as a constant zero function f̃(x). The transformed problem is then of the form:

Minimize f̃(x) ≡ 0

subject to: g0(x) = f(x)− Ω = 0, Ω ∈ R,

gi(x) = 0, i = 1, ...,meq ∈ N,
gi(x) ≥ 0, i = meq + 1, ...,m ∈ N,

(2)

Let now x∗ denote the global optimal solution of problem (1). Then an oracle parameter Ω = f(x∗)
would directly imply, that a feasible solution of problem (2) is the global optimal solution of problem
(1).

Assuming that for a given optimization problem the optimal objective function value f(x∗) is
known, the problem definition (2) holds a significant advantage compared to definition (1). By
transforming the objective function into an equality constraint, the current progress of the algo-
rithm in minimizing the new constraint g0(x) and minimizing the residual of the original constraints
g1(x), ..., gm(x) becomes directly comparable. This comparability can be exploited by a penalty
function, which balances its penalty weight on either the transformed objective function or the
original constraints. The basic oracle penalty function (3) is an example of such a function:

p(x) = α · |f(x)− Ω|+ (1− α) · res(x) (3)

where α is given by:

α =


1− 1

2
√

|f(x)−Ω|
res(x)

, if res(x) ≤ |f(x)− Ω|

1
2

√
|f(x)−Ω|
res(x) , if res(x) > |f(x)− Ω|

(4)

The basic oracle penalty function (3) implicitly incorporates the transformed objective function
|f(x)−Ω| and is therefore applicable to problem definition (1) without the necessity of the explicit
problem transformation (2). It is to note, that the basic oracle penalty function assumes that
Ω = f(x∗) and that the formulation is of heuristic nature.

The α factor is constructed as a dynamic weight between zero and one. This factor balances
the penalty function value p(x) in respect to the relationship between |f(x) − Ω| and res(x). If

res(x) ≤ |f(x)−Ω| the quotient |f(x)−Ω|
res(x) will be greater or equal to one, which results in a value of

α between 0.5 and 1. Hence, the penalty function will focus its weight on the transformed objective

function. In case res(x) > |f(x)−Ω| the quotient |f(x)−Ω|
res(x) will be smaller than one, which results

in a value of α between 0 and 0.5. Therefore the penalty function will focus its weight on the
residual.

Figure 1 illustrates the basic oracle penalty function p(x) for an Ω parameter equal to zero according
to objective function values f(x) ∈ [−10, 10] and residual function values res(x) ∈ [0, 10]. It is to
note, that the shape of the penalty function is not affected by different Ω parameters. A different
Ω parameter will result only in a movement to the right (Ω > 0) or left (Ω < 0) according to the
x-axis, representing the objective function values.
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Figure 1: The basic oracle penalty function for Ω = 0

The here proposed basic oracle penalty function suffers from a significant drawback. It is absolute
sensitive with regard to the oracle parameter selection. To guide an algorithm to the global optimal
solution of a problem, information about the global optimal objective function value is essential to
apply the basic oracle penalty function.

2.2 Extensions for the basic oracle penalty function

With intention to apply the oracle penalty method on problems where no information is known
about the optimal objective function value f(x∗), this section describes modifications which make
the method more robust regarding oracle parameter selection Ω ̸= f(x∗). However, the modifica-
tions carried out here still assume two conditions for oracle parameters. This is Ω ≥ f(x∗) and
that at least one feasible solution x̃ exist, so that Ω = f(x̃) ≥ f(x∗). These two conditions define
a set of oracle parameters which is denoted as trust oracles. The set TΩ defining all trust oracles
is given by:

TΩ := {f(x̃) | gi(x̃) = 0 (i = 1, ...,meq) ∧ gi(x̃) ≥ 0 (i = meq + 1, ...,m)} (5)

Obviously a trust oracle can also be used as oracle parameter within the basic oracle penalty
function (3). Such a parameter selection will guide an algorithm, minimizing the corresponding
penalty function, to a feasible solution x̃ with f(x̃) = Ω. Nevertheless, based on the symmetric
structure of the penalty function (3), no feasible iterate x̄ with f(x̄) < Ω will be penalized lower
than x̃ with f(x̃) = Ω.

The first modification concerns the desired property of the penalty function, to penalize any feasible
iterate x̄ with f(x̄) < Ω lower than a feasible iterate x̃ with f(x̃) = Ω and therefore p(x̃) = 0.
This can be easily achieved by splitting the penalty function (3) into two cases. The first case
affects any iterate with an objective function value greater than the oracle or any infeasible iterate,
while the second case concerns only feasible iterates with an objective function value lower than
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the oracle:

p(x) =

 α · |f(x)− Ω|+ (1− α) · res(x) , if f(x) > Ω or res(x) > 0

−|f(x)− Ω| , if f(x) ≤ Ω and res(x) = 0
(6)

Due to this modification any feasible iterate x̄ with f(x̄) < Ω will be penalized with a negative
value. Moreover, a lower f(x̄) directly results in a better (lower) penalty function value, which
seems quite reasonable.

The second modification concerns infeasible iterates corresponding to objective function values
lower than the oracle parameter Ω. Imagine a just slightly infeasible iterate x̂ with an objective
function value f(x̂) much lower than Ω. Such an iterate would be penalized higher than any iterate
with the same residual greater than f(x̂) and lower than Ω. Modifying the α factor by adding a
new case overcomes this undesired property. In case of an infeasible iterate x̂ with f(x̂) ≤ Ω, the
penalty function should penalize the iterate with its residual res(x̂). This means, α is zero in such
a case:

α =



1− 1

2
√

|f(x)−Ω|
res(x)

, if res(x) ≤ |f(x)− Ω| and f(x) > Ω

1
2

√
|f(x)−Ω|
res(x) , if res(x) > |f(x)− Ω| and f(x) > Ω

0 , if f(x) ≤ Ω

(7)

The third modification concerns iterates ẋ with f(ẋ) > Ω and res(ẋ) ≤ |f(ẋ)−Ω|
3 . For such iterates

a highly undesired effect takes place: A iterate ẋ with f(ẋ) > Ω and res(ẋ) < |f(ẋ)−Ω|
3 will be

penalized higher than an iterate ẍ with f(ẋ) = f(ẍ) and res(ẍ) = |f(ẍ)−Ω|
3 . In other words, even

so the iterate ẋ is equally good in the objective function as the iterate ẍ and ẋ has a lower residual
(maybe even zero) than ẍ, it will be penalized higher than ẍ.

This effect is caused by the construction of α and can also be observed in the shape of the basic
penalty function in Figure 1. The area of the shape which bends upwards in the front right part
of the figure relates to this effect. Now a modification is carried out, which resolves this effect
by constructing an additional α case. This α case will ensure, that any iterate ẋ with the above
properties is penalized with the same value as an iterate ẍ with the above properties. This means,
that the mentioned area in Figure 1 would be plane (see Figure 2).

To obtain this additional α case it is shown first that the penalty function p(x) in (6), concerning
only iterates x with an identical objective function value f(x) > Ω, takes its minimum for an

iterate with res(x) = |f(x)−Ω|
3 . Then the corresponding penalty function value will be calculated

and used to deduce the additional α case.

Let

f(x) > Ω and res(x) ≤ |f(x)− Ω|

then

α = 1− 1

2
√

|f(x)−Ω|
res(x)
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and

p(x) = α · |f(x)− Ω|+ (1− α) · res(x)

=⇒ p(x) = (1− 1

2
√

|f(x)−Ω|
res(x)

) · |f(x)− Ω|+ (1− (1− 1

2
√

|f(x)−Ω|
res(x)

)) · res(x)

= |f(x)− Ω| − |f(x)− Ω|

2
√

|f(x)−Ω|
res(x)

+
res(x)

2
√

|f(x)−Ω|
res(x)

= |f(x)− Ω| −
|f(x)− Ω|

√
res(x)

2
√
|f(x)− Ω|

+
res(x)

√
res(x)

2
√
|f(x)− Ω|

To investigate the deviation of p(x) in respect to res(x), the residual function res(x) is substituted
by y and the function p̃(y) is defined by:

p̃(y) = (1− 1

2
√

|f(x)−Ω|
y

) · |f(x)− Ω|+ (1− (1− 1

2
√

|f(x)−Ω|
y

)) · y

The deviation of p̃(y) in respect to y is given by:

d

dy
p̃(y) = − |f(x)− Ω|

4
√

|f(x)− Ω|√y
+

3
√
y

4
√
|f(x)− Ω|

Let

d

dy
p̃(y) = 0

then

|f(x)− Ω|
4
√
|f(x)− Ω|√y

=
3
√
y

4
√
|f(x)− Ω|

⇐⇒ |f(x)− Ω|
√
y

= 3
√
y

⇐⇒ y =
|f(x)− Ω|

3

Under the above assumption the second deviation of p̃(y) with respect to y is given by:

d2

d2y
p̃(y) =

√
|f(x)− Ω|
8y

√
y

+
3

8
√
y
√
|f(x)− Ω|

> 0

This means that the penalty function (under the above assumptions) takes its minimum for iterates

x with identical objective function value f(x) and res(x) = |f(x)−Ω|
3 . Now the penalty function

value for such an iterate is calculated.

Let

f(x) > Ω and res(x) =
|f(x)− Ω|

3
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then

α = 1− 1

2
√
3

=⇒ p(x) = (1− 1

2
√
3
) · |f(x)− Ω|+ 1

2
√
3
· |f(x)− Ω|

3

= |f(x)− Ω| − |f(x)− Ω|
2
√
3

+
|f(x)− Ω|

6
√
3

= |f(x)− Ω| · (1− 1

2
√
3
+

1

6
√
3
)

= |f(x)− Ω| · 6
√
3− 2

6
√
3

Now the penalty function (6) (under the above assumptions) is set equal to the above optimal
penalty function value to deduce α.

Let

α · |f(x)− Ω|+ (1− α) · res(x) = |f(x)− Ω| · 6
√
3− 2

6
√
3

then

α · (|f(x)− Ω| − res(x)) + res(x) = |f(x)− Ω| · 6
√
3− 2

6
√
3

=⇒ α · (|f(x)− Ω| − res(x)) = |f(x)− Ω| · 6
√
3− 2

6
√
3

− res(x)

=⇒ α =
|f(x)− Ω| · 6

√
3−2

6
√
3

− res(x)

|f(x)− Ω| − res(x)

This α factor can now be applied as additional case within (7) for iterates x with res(x) ≤ |f(x)−Ω|
and f(x) > Ω. All iterates x with identical objective function value f(x) > Ω and res(x) ≤ |f(x)−Ω|

3

will then be penalized with |f(x)− Ω| · 6
√
3−2

6
√
3

.

2.3 Extended oracle penalty function

In this section the basic oracle penalty function, presented in section 2.1, is extended by the three
modification explained in section 2.2. The extended oracle penalty function is of the form:

p(x) =

 α · |f(x)− Ω|+ (1− α) · res(x) , if f(x) > Ω or res(x) > 0

−|f(x)− Ω| , if f(x) ≤ Ω and res(x) = 0
(8)

where α is given by:
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α =



|f(x)−Ω|· 6
√

3−2

6
√

3
−res(x)

|f(x)−Ω|−res(x) , if f(x) > Ω and res(x) < |f(x)−Ω|
3

1− 1

2
√

|f(x)−Ω|
res(x)

, if f(x) > Ω and |f(x)−Ω|
3 ≤ res(x) ≤ |f(x)− Ω|

1
2

√
|f(x)−Ω|
res(x) , if f(x) > Ω and res(x) > |f(x)− Ω|

0 , if f(x) ≤ Ω

(9)

Figure 2 illustrates the extended oracle penalty function p(x) for an Ω parameter equal to zero
according to objective function values f(x) ∈ [−10, 10] and residual function values res(x) ∈ [0, 10].
Again, it is to note, that the shape of the penalty function itself is not affected by different choices
of the oracle parameter. Those will only result in a movement of the shape to the right (Ω > 0) or
the left (Ω < 0).
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Figure 2: The extended oracle penalty function for Ω = 0

Now it is explained how the three modifications can be observed in the shape of the extended
oracle penalty function, illustrated in Figure 2. The first modification, concerning feasible iterates
x̄ with f(x̄) < Ω, corresponds to the vertical triangular (in the left front), penalizing those iterates
with a negative penalty function value. The second modification, concerning infeasible iterates x̂
with f(x̂) ≤ Ω, corresponds to the plane area (in the left back), penalizing those iterates with
their residual function value. The third modification, concerning iterates ẋ with f(ẋ) > Ω and

res(ẋ) ≤ |f(ẋ)−Ω|
3 , corresponds to the small plane area (in the right front) of the shape of the

penalty function. While this area is nonlinear in the basic oracle penalty function shape, it is
now plane, meaning that those iterates are penalized equal as iterates ẍ with f(ẍ) = f(ẋ) and

res(ẍ) = |f(ẍ)−Ω|
3 .
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As explained in section 2.4 those modifications are intended to make the method robust regarding
trust oracles (5). However, due to the first and second modification, the extended oracle penalty
function can also be applied for sufficiently large oracle parameters. Sufficiently large means here
that Ω > f(x) for any iterate x. For such an oracle parameter only the first and second modi-
fications are relevant in the penalty function. This means, infeasible iterates x will be penalized
with their residual res(x) ≥ 0, while feasible iterates x will be penalized with the negative distance
−|f(x) − Ω|. Hence, for sufficiently large oracle parameters the extended oracle penalty function
will act very similar to a static penalty function (see Table 2).

2.4 Update rule and implementation

Here a simple but effective update rule for the oracle parameter Ω is presented. It is intended to be
applied if no information about the optimal feasible objective function value is known and several
optimization runs are performed. However, it is not assumed that the oracle parameter Ω is
changed during an optimization run! Updating the oracle parameter during an optimization
run implies two major failures. First, imagine a case of an ambitious oracle parameter selection (e.g.
Ω=100) and the current optimization run reveals at first a feasible solution with higher objective
than Ω (e.g. f(x) = 150) and an oracle update (e.g. Ω =150) takes place, the penalty function
will then behave like a static penalty, not allowing the algorithm to explore infeasible regions with
corresponding objective to the original oracle (e.g. Ω=100). In other words, the main idea of the
oracle penalty method is corrupted, if preliminary updates of the oracle parameter are undertaken
during an optimization run. Second, changing the oracle parameter Ω during an optimization run
corrupts the reference system of penalty values created previously in the same run. In other words,
if the penalty of an iterate was at the beginning of an optimization run calculated as p1 based on
an oracle parameter Ω1, the same iterate would have another penalty value p2 based on the newly
updated oracle parameter Ω2. Hence, the reference system of previously calculated penalty values
got lost. Oracle parameter updates should only take place, when a single optimization
run is finished and a new one is started.

Let Ωi denote the oracle parameter used for the i-th optimization run. Furthermore f i and
resi should denote the objective function value and residual function value obtained by the i-th
optimization run. The here proposed update rule will initialize the oracle parameter Ω1 for the
very first run with a sufficiently large parameter. This means Ω > f(x) for any iterate x to a
given problem. As explained in section 2.3 the extended oracle penalty function will than act very
similar to a static penalty function. This means the method is focused completely on the residual
until a feasible solution is found. Please note, that a too large initialization of the oracle parameter
(e.g. Ω = 1032) can cause numerical problems. An initialization of the oracle parameter of about
Ω = 106 or Ω = 109 is therefore recommended for most applications.

The oracle parameters Ω2,3,... used for any further optimization run should then be calculated by
the following update rule:

Ωi =

{
f i−1 ,if f i−1 < Ωi−1 and resi−1 = 0
Ωi−1 ,else

(10)

According to (10) the oracle parameter Ωi for the i-th optimization run is then always equal
to the lowest known feasible objective function value or (in case no feasible solution is found so
far) remains sufficiently large, until a feasible solution is found. This is done by updating the
oracle parameter with the latest feasible solution which has a lower objective function value than
the present oracle parameter or leaving the oracle parameter unaffected, in case the solution is
infeasible or has a larger objective function value than the present oracle parameter.

It is to note, that for a specific problem an intuitive initialization of the very first oracle parameter
Ω1 by the user is possible as well (see Section 3.2.1 for an example). Imagine a real world application
with an already known (feasible) solution, in such a case the user could initialize Ω1 with a value
reasonable lower than the current known solution objective function value. This property of an
easy and intuitive handling of the oracle method is seen as quite appealing for practitioners.

Algorithm 1 gives a pseudo-code implementation of the extended oracle penalty function. For a
given objective function value f(x), a residual value res(x), an oracle Ω and some tolerance acc ≥ 0,
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this algorithm calculates the corresponding penalty function value p(x). Due to the if-clauses in
this implementation, the computational expensive α parameters are only calculated case depended
and if necessary.

Algorithm 1 Extended oracle penalty function

if f(x) ≤ Ω and res(x) ≤ acc then

p(x) = f(x)− Ω

else

if f(x) ≤ Ω then

p(x) = res(x)

else

if res(x) < f(x)−Ω
3 then

α =
(f(x)−Ω) 6

√
3−2

6
√

3
−res(x)

f(x)−Ω−res(x)

end if

if res(x) ≥ f(x)−Ω
3 and res(x) ≤ (f(x)− Ω) then

α = 1− 1

2
√

f(x)−Ω
res(x)

end if

if res(x) > (f(x)− Ω) then

α = 1
2

√
f(x)−Ω
res(x)

end if

p(x) = α(f(x)− Ω) + (1− α)res(x)

end if

end if

return p(x)

Implementations of the extended oracle penalty method in the programming languages Fortran,
C/C++ and Matlab can be found online [31] and can freely be downloaded at

Http://www.midaco-solver.com/oracle.html.

3 Numerical Results

To evaluate the performance of the oracle method and compare it with common penalty functions,
numerical results are presented and analyzed in this section. Only the extended oracle penalty
function is considered here, as the basic version obviously lacks of practical relevance. The three
examples of common penalty functions presented in Table 2 are used here as concurrent methods.

As stochastic metaheuristic we consider MIDACO [31], which is an advanced implementation of
an ant colony optimization (ACO) algorithm for mixed integer search domains. The theoretical
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fundamentals of the algorithm are described in [29] and [30]. For the numerical results presented
in this section, we employed different penalty functions within MIDACO.

The ACO metaheuristic for continuous [28] and its extension to mixed integer search domains
[30] is based on multi-kernel probability density functions (PDF’s). In case of MIDACO Gauss
distributions are considered. In every generation some solution candidates (called ants) for the
optimization problem are generated successively by sampling random numbers according to those
PDF’s in every dimension of the search space. By saving and ranking the ants in some solution
archive based on their fitness, parameters for the PDF’s like mean, deviation and kernel weights
are adjusted and influence the creation of ants in the following generation. Here the fitness of ants
refers to either their corresponding objective function value (in case of unconstrained problems) or
to some penalty function value (in case of constrained problems).

As this metaheuristic is of very general nature, we feel that the comparative results of different
penalty functions tested within this framework are transferable to other metaheuristics, which also
rank their individuals exclusively by some fitness function. Moreover, as described in section 2.1
the oracle penalty method aims on a problem transformation that happens outside the optimiza-
tion algorithm and no algorithmic interaction (except passing the objective function, residual and
penalty values) happens between the penalty function and the metaheuristic. Therefore we believe
that the following results are of representative nature.

In the following we present numerical results on a set of 60 constrained benchmark problems from
the open literature and we briefly discuss some existing results of the oracle penalty method for
real-world applications.

3.1 Numerical results on 60 constrained benchmark problems

A set of 60 constrained benchmark problems from the open literature is considered to compare the
performance of different penalty functions. Details on all benchmark problems can be found in the
Appendix in Table 15.

As penalty functions we consider besides the extended oracle penalty function the static, death
and adaptive one (see Table 2). For the numerical test different parameter setups for some penalty
functions have been applied. Table 3 contains information on the penalty functions and parameters
used. The extended oracle penalty function was tested with two setups. One time the oracle
parameter remained constant throughout all test runs for a problem, while the other time this
parameter was updated according to the update rule presented in Section 2.4. The static penalty
was tested with only one setup and the death penalty does not require any parameter. The adaptive
penalty was tested with three different parameter setups, where the first one (adaptive1) uses the
same parameters as proposed in Coello Coello [3].

Table 3: Penalty functions and their parameters considered for numerical results
Abbreviation Penalty function Section Parameters
oracleupdate Extended oracle 2.3, 2.4 Ω1 = 109, Ω2,3,... updated according to equation (10)
oraclefix Extended oracle 2.3 Ω = 109

static Static 1.1 K = 109

death Death 1.1 none
adaptive1 Adaptive 1.1 λ(1) = 100, β1 = 1, β2 = 2, k = 20
adaptive2 Adaptive 1.1 λ(1) = 50, β1 = 1.5, β2 = 2.5, k = 10
adaptive3 Adaptive 1.1 λ(1) = 200, β1 = 2, β2 = 3, k = 40

Every problem of the set was tested 100 times with a different random seed for the random number
generator within MIDACO. For every single test run two stopping criterions were applied. The first
one is a maximal budget of fitness evaluations, where one fitness evaluation equals an objective
function evaluation and all constraint function evaluations. We assigned a budget of 10000 · n
fitness evaluations for every test run, where n is the dimension of the optimization variables. The
second one is a success criteria based on the best known objective function value f(x∗) (see Table
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15). If a feasible solution x with an objective function value f(x) was found, so that:

|f(x)− f(x∗)|
f(x∗)

≤ acc, (11)

the run was stopped and recorded as successful in finding the global optimal solution. Here an
accuracy acc of 10−4 was used, which was also set as accuracy for the constraints (see acc tolerance
in Algorithm 1).

The overall performance of all tested penalty functions on the set of 60 problems is displayed in
Table 5, where Table 4 explains the abbreviations used. Detailed results on every problem and
every penalty function can be found in the Appendix in Table 17, where Table 16 explains the
abbreviations used.

Table 4: Abbreviations for Table 5
Abbreviation Explanation
Penalty Penalty function used in MIDACO

Optimal (out of 60, [%]) Total number of problems where at least one out of 100 runs a
global optimal solution could be found by the corresponding penalty function.

Feasible (out of 60, [%]) Total number of problems where at least one out of 100 runs a feasible solution
could be found by the corresponding penalty function.

% Feasible (overall) Percentage of all test runs by the corresponding penalty function in which a feasible
solution was found.

% Optimal (overall) Percentage of all test runs by the corresponding penalty function in which a
global optimal solution was found.

Table 5: Overall performance of different penalty methods
Penalty Optimal (out of 60, [%]) Feasible (out of 60, [%]) % Feasible (overall) % Optimal (overall)
Oracleupdate 56 [0.933] 60 [1.000] 0.919 0.733
Oraclefix 48 [0.800] 60 [1.000] 0.995 0.694
Static 50 [0.833] 60 [1.000] 0.997 0.693
Death 40 [0.667] 57 [0.950] 0.831 0.542
Adaptive1 48 [0.800] 59 [0.983] 0.903 0.688
Adaptive2 49 [0.817] 59 [0.983] 0.901 0.699
Adaptive3 52 [0.867] 60 [1.000] 0.907 0.703

With 56 out of 60 problems the extended oracle penalty function with updated oracles had the
highest potential in solving a problem to the global optimum. With 52 out of 60 problems the
Adaptive3 performed second best in finding global optimal solutions. Interpreting this result, one
has to take into account, that the adaptive penalty function needs four parameters to be tuned,
while the oracle penalty method only needs one.

As expected, the extended oracle penalty function with fixed oracle and the static penalty function
performed very similar (see Section 2.3), this can especially be observed in the statistics on all
runs. Those two penalty functions performed most robust in finding feasible solutions, but lacked
of potential to find global optimal solutions on more difficult problems. Not surprisingly the death
penalty performed worst in all categories.

That the death penalty was able to locate the global optimal solution in 40 out of 60 cases, means
that two third of the test problems are trivial or easy. Nevertheless, this leaves 20 non-trivial
problems in the set on which significant differences between the tested penalty functions could
be observed. On four problems no penalty function was able to find the global optimal solution.
On these problems the results are not clear. On the problems nvs02 and nvs05 the Oracleupdate
performed best, while on floudas4 and ST E36 the Oraclefix and static penalty function performed
best (see Appendix).
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3.2 Numerical results on real-world applications

Here we briefly discuss some results on real-world applications obtained by the oracle penalty
method. The first application, the Tennessee Eastman Process [7], is a well known case study
in chemical engineering. The second application is a distillation column sequencing model taken
from Floudas and Pardalos book Collection of Test Problems for Constrained Global Optimization
Algorithms [14]. The third application is an optimal control problem of an aircraft manoeuvre
introduced by Kaya and Noakes [21] to which several comparative results can be found in the
literature.

3.2.1 Tennessee Eastman Process

The results on the Tennessee Eastman Process (TEP) presented in this subsection are taken from
[30] and can be seen as an example of the successful application of the oracle penalty method (used
within a stochastic metaheuristic) on a complex real-world application.

The TEP was introduced by Downs and Vogel [7] and is since then widely used in the literature as
challenging benchmark. The TEP simulates a chemical plant where the objective is to minimize
the operation cost. In [30] a MINLP formulation is considered which incorporates 171 DAEs (30
ODEs and 141 algebraic equations). The variable and constraint dimensions of the MINLP are
shown in Table 6.

Table 6: MINLP problem dimensions for the TEP
Dimension Value Explanation
n 43 Number of variables in total
nint 7 Number of integer variables
m 11 Number of constraints in total
meq 1 Number of equality constraints

Three different global optimization solvers have been tested and compared on this MINLP formula-
tion of the TEP in [30]: SSM [9] (a scatter search algorithm), MITS [11] (a tabu search algorithm)
and ACOmi [30] (an ant colony optimization algorithm).

In case of ACOmi the oracle penalty method was used to handle the constraints. For ACOmi two
different setups where considered: one with a reasonable oracle parameter Ω = 100 and one with
a very large oracle parameter Ω = 1012. Please note that the (feasible) initial point for all solvers
had an objective function value of 159.33. Therefore the first ACOmi setup with Ω = 100 can be
seen as a reasonable oracle choice.

Table 8 compares the results of all solvers for 10 test runs, where Table 7 gives the abbreviations
used.

Table 7: Abbreviations for Table 8
Abbreviation Explanation
Solver Solver used for corresponding line of results
fbest Best objective function value out of all runs
fworst Worst objective function value out of all runs
fmean Mean objective function value out of all runs
evalmean Mean number of function evaluations out of all runs
timemean Mean time out of all runs

Table 8: Results for the TEP
Solver fbest fworst fmean evalmean timemean

ACOmiΩ=100 84.19 152.51 112.65 10636 6593.59
ACOmiΩ=1012 147.57 148.72 148.06 10113 9843.04
SSM 147.547 148.82 147.991 21822 10857.8
MITS 147.951 149.015 148.484 19309 10435.8
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It can be seen, that only ACOmi in its setup with a reasonable oracle parameter choice of Ω = 100
was able to find a significantly better solution. As the second ACOmi setup with Ω = 1012 (which
leads to an oracle penalty function behavior alike those of a static penalty function) performed
very similar to SSM and MITS, it is shown that not ACOmi but the oracle penalty method and
its selected oracle parameter played the key role.

3.2.2 Distillation column sequencing test problems

In this subsection two constrained global optimization test problems taken from Floudas and
Pardalos [14] (Chapter 5.5 Test Problem 4 and Chapter 5.6 Test Problem 5) are considered. In the
following we refer to them as TP4 and TP5. These applications simulate some chemical component
separation by distillation columns as MINLP problems. Table 9 and Table 10 lists the MINLP
problem dimensions for TP4 and TP5.

Table 9: MINLP problem dimensions for TP4
Dimension Value Explanation
n 52 Number of variables in total
nint 2 Number of integer variables
m 38 Number of constraints in total
meq 35 Number of equality constraints

Table 10: MINLP problem dimensions for TP5
Dimension Value Explanation
n 113 Number of variables in total
nint 3 Number of integer variables
m 71 Number of constraints in total
meq 67 Number of equality constraints

For both applications best known solutions are reported in [14]. MIDACO [31] (which incorporates
the oracle penalty method with automated restarts and oracle updates) was used to optimize these
applications. Table 11 compares the reported best known solutions in the literature and those
obtained by MIDACO using the oracle penalty method.

Table 11: Comparison of solutions (objective function values) for TP4 and TP5
Problem best known solution reported in [14] best known solution found by MIDACO

TP4 0.626 0.337
TP5 2.579 0.316

In both cases a significant better solution could be obtained by MIDACO using the oracle penalty
method. Implementations (in Matlab) of the TP4 and TP5 applications together with the here
mentioned MIDACO solutions can freely by downloaded from [31] at

Http://www.midaco-solver.com/applications.html

for verification purposes.

3.2.3 F-8 aircraft control problem

In this subsection an optimal control of an aircraft manoeuvre is discussed. This application is
known as the F-8 aircraft control problem introduced by Kaya and Noakes [21]. Here we refer to
a formulation of this application that can be downloaded from mintOC [27] at

Http://mintoc.de/index.php/F-8 aircraft.
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Several reference solutions to this application can be found at this online reference. Among those
are solutions obtained by well known solvers such as BONMIN and IPOPT. Please note, that none
of the mentioned two solvers is capable to solve this application to its current best known solution.
Hence we consider this as a challenging application with good possibilities to compare the solution
quality.

MIDACO [31] (which incorporates the oracle penalty method with automated restarts and oracle
updates) was used to optimize this application. To apply MIDACO on the F-8 aircraft control
problem we transformed it into a NLP black-box model. The objective of the model was the final
time of the aircraft manoeuvre. The constraints of the model incorporated the integration over
the states of the original control problem. Furthermore three additional constraints assured a final
state condition. In total this lead to an amount of 183 constraints in the black-box model. Six
different stages to simulate the integer control were considered, which resulted in six continuous
optimization variables. The NLP black-box model dimensions are listed in Table 12.

Table 12: NLP black-box model dimensions for F-8 aircraft control problem
Dimension Value Explanation
n 6 Number of variables
m 183 Number of constraints in total
meq 3 Number of equality constraints

In the F-8 aircraft model the final state constraints hold that all three differential states must be
zero at the end of the manoeuvre. These equality constraints are highly sensitive to the precision
of the six continuous variables in the model. As MIDACO is a stochastic solver a moderate precision
of 10−2 is assumed for the constraint violation in the l∞-Norm. This precision is a crucial factor
because MIDACO employees the oracle update rule described in Section 2.4 which assumes only
feasible solutions as valid update candidates. Therefore a moderate precision enables the algorithm
to realize more oracle updates in shorter computation time.

For the optimization run on the F-8 aircraft model we assigned a time budget of 8 hours on a PC
with 2 GHz clock rate and 2 GB RAM working memory. In this 8 hours 304605 black-box model
evaluations were performed, where not every evaluation necessarily implied an integration over the
differential states. In Table the currently best know solution by Sager [27] is compared to the one
obtained by MIDACO using the format taken from

Http://mintoc.de/index.php/F-8 aircraft.

Table 13: F-8 aircaft control problem solutions
Arc w(t) Sager MIDACO

1 1 1.13492 1.142628
2 0 0.34703 0.408936
3 1 1.60721 1.476987
4 0 0.69169 0.488491
5 1 0 0.000017
6 0 0 0.225701
Infeasibility - 2.21723e-07 9.998e-03
Objective - 3.78086 3.742759

The differential states corresponding to the MIDACO solution are displayed in Figure 3. From both,
the numerical solutions and the differential states, it can be seen that the MIDACO solution is very
close to the Sager solution. The remaining differences and slightly better objective function value
finds its explanation in the moderate precision in the infeasibility of the MIDACO solution.
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Figure 3: Differential states

To illustrate the performance of the oracle method on this application we include a Figure showing
all oracle parameter updates within MIDACO over the optimization horizon of 8 hours. Figure 4
shows the convergence curve of all oracle parameters Ωi (see Section 2.4) starting with the very
first feasible solution which was found after about 10000 evaluations with an objective function
value of about 5.87.

Figure 4: Oracle parameter convergence curve
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From the quality of the MIDACO solution and the many oracle parameter updates shown in Figure
4 we conclude, that the oracle penalty method is capable to solve even complex problems where
well known solvers fail.

4 Conclusions

A novel penalty method, intended for the use in stochastic metaheuristics, has been introduced and
developed in this paper. Numerical results on a set of 60 constrained MINLP benchmark problems
obtained by the oracle method have been compared to those of common penalty functions. It
turned out, that the extended oracle penalty function had the highest potential in finding global
optimal solutions, if the oracle parameter was selected according to a previously described update
rule. Also it could be observed, that the oracle method performed very similar to a static penalty
function if the oracle parameter was selected sufficiently large and was not updated.

The use of the method on three real-world applications revealed its practical strength. Either better
solutions (than those reported in the literature) or the best known solutions could be obtained on
all applications.

Based on those results the oracle penalty method is not only seen an alternative to the static
penalty function, but also as a true alternative to concurrent advanced penalty methods. Regarding
the latter the oracle method keeps the decisive advantage of only one parameter, which is easy
and intuitive to handle. As for real- world applications often information about existing solution
objective function values exist, the oracle penalty method seems to be highly suitable here as well.

Altogether the oracle penalty method is seen an appealing new way to handle constrained opti-
mization problems within stochastic metaheuristics. It is easy to implement and handle, performs
as robust as a static penalty function and keeps a high potential in finding global optimal solutions
where other methods fail.
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5 Appendix

A set of 60 constrained benchmark problems from the open literature has been considered to
evaluate the performance of the penalty functions. Detailed information on the problems is listed
in Table 15 while Table 14 contains explanations for the abbreviations used.

Table 14: Abbreviations for Table 15
Abbreviation Explanation
Name Problem name used in the literature
Ref Literature reference
n Number of variables in total
nint Number of integer variables
meq Number of equality constraints
m Number of constraints in total
f(x∗) Best known objective function value
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Table 15: Information on the benchmark problems
Name Ref n nint m meq f(x∗)
asaadi 1.1 [1] 4 3 3 0 -0.409566D+02
asaadi 1.2 [1] 4 4 3 0 -0.380000D+02
asaadi 2.1 [1] 7 4 4 0 0.694903D+03
asaadi 2.2 [1] 7 7 4 0 0.700000D+03
asaadi 3.1 [1] 10 6 8 0 0.372195D+02
asaadi 3.2 [1] 10 10 8 0 0.430000D+02
van de Braak 1 [2] 7 3 2 0 0.100000D+01
van de Braak 2 [2] 7 3 4 0 -0.271828D+01
van de Braak 3 [2] 7 3 4 0 -0.898000D+02
nvs01 [18] 3 2 3 1 0.124697D+02
nvs02 [18] 8 5 3 3 0.596418D+01
nvs03 [18] 2 2 2 0 0.160000D+02
nvs05 [18] 8 2 9 4 0.547093D+01
nvs07 [18] 3 3 2 0 0.400000D+01
nvs08 [18] 3 2 3 0 0.234497D+02
nvs10 [18] 2 2 2 0 -0.310800D+03
nvs11 [18] 3 3 3 0 -0.431000D+03
nvs12 [18] 4 4 4 0 -0.481200D+03
nvs13 [18] 5 5 5 0 -0.585200D+03
nvs14 [18] 8 5 3 3 -0.403581D+00
nvs15 [18] 3 3 1 0 0.100000D+01
nvs17 [18] 7 7 7 0 -0.110040D+04
nvs18 [18] 6 6 6 0 -0.778400D+03
nvs19 [18] 8 8 8 0 -0.109840D+04
nvs20 [18] 16 5 8 0 0.230922D+03
nvs21 [18] 3 2 2 0 -0.568478D+01
nvs22 [18] 8 4 9 4 0.605822D+01
nvs23 [18] 9 9 9 0 -0.112520D+04
nvs24 [18] 10 10 10 0 -0.103320D+04
duran/grossmann 1 [8] 6 3 6 0 0.600974D+01
duran/grossmann 2 [8] 11 5 14 1 0.730357D+02
duran/grossmann 3 [8] 17 8 23 2 0.680100D+02
floudas 1 [12] 5 3 5 2 0.766718D+01
floudas 2 [12] 3 1 3 0 0.107654D+01
floudas 3 [12] 7 4 9 0 0.457958D+01
floudas 4 [12] 11 8 7 3 -0.943470D+00
floudas 5 [12] 2 2 4 0 0.310000D+02
floudas 6 [12] 2 1 3 0 -0.170000D+06
ST E36 [10] 2 1 2 1 -0.246000D+03
ST E38 [10] 4 2 3 0 0.719773D+04
ST E40 [10] 4 3 5 1 0.282430D+02
ST MIQP1 [10] 5 5 1 0 0.281000D+03
ST MIQP2 [10] 4 4 3 0 0.200000D+01
ST MIQP3 [10] 2 2 1 0 -0.600000D+01
ST MIQP4 [10] 6 3 4 0 -0.457400D+04
ST MIQP5 [10] 7 2 13 0 -0.333890D+03
ST TEST1 [10] 5 5 1 0 0.000000D+00
ST TEST2 [10] 6 6 2 0 -0.925000D+01
ST TEST4 [10] 6 6 5 0 -0.700000D+01
ST TEST5 [10] 10 10 11 0 -0.110000D+03
ST TEST6 [10] 10 10 5 0 0.471000D+03
ST TEST8 [10] 24 24 20 0 -0.296050D+05
ST TESTGR1 [10] 10 10 5 0 -0.128116D+02
ST TESTGR3 [10] 20 20 20 0 -0.205900D+02
ST TESTPH4 [10] 3 3 10 0 -0.805000D+02
TLN2 [10] 8 8 12 0 0.230000D+01
ALAN [24] 8 4 7 2 0.292500D+01
MEANVARX [5] 35 14 44 8 0.143692D+02
OAER [13] 9 3 7 3 -0.192310D+01
MIP-EX [17] 5 3 7 0 0.350000D+01
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Table 17 lists the results for all 60 problems respectively to the penalty function employed in
MIDACO. According to the specific problem and penalty function employed the number of global
optimal solutions and the number of feasible solutions obtained are presented. The best, worst and
mean objective function value, the average amount of function evaluations and time (in seconds)
is also reported over all feasible solutions. In case no feasible solution was found, this information
is not available. Table 16 explains all abbreviations used in Table 17. All results were calculated
on the same personal computer with 2 GHz clock rate and 2 GB RAM working memory.

Table 16: Abbreviations for Table 17
Abbreviation Explanation
Name Problem name used in the literature
Penalty Penalty function used in MIDACO

Optimal Number of global optimal solutions found out of 100 test runs
Feasible Number of feasible solutions found out of 100 test runs
fbest Best (feasible) objective function value found out of 100 test runs
fworst Worst (feasible) objective function value found out of 100 test runs
fmean Mean objective function value over all runs with a feasible solution
evalmean Mean number of evaluations over all runs with a feasible solution
timemean Mean cpu-time (in seconds) over all runs with a feasible solution
na information is not available (in case no feasible solution was found)
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Table 17: Detailed results for the constrained benchmark problems
Name Penalty Optimal Feasible fbest fworst fmean evalmean timemean

asaadi 1.1 Oracleupdate 100 100 -40.958 -40.953 -40.955 1642 0.014
Oraclefix 100 100 -40.958 -40.953 -40.955 1144 0.015
Static 100 100 -40.958 -40.953 -40.955 1125 0.013
Death 100 100 -40.958 -40.953 -40.955 1404 0.013
Adaptive1 100 100 -40.958 -40.953 -40.955 1093 0.013
Adaptive2 100 100 -40.958 -40.953 -40.955 1051 0.013
Adaptive3 100 100 -40.958 -40.953 -40.955 1115 0.012

asaadi 1.2 Oracleupdate 100 100 -38.000 -38.000 -38.000 78 0.010
Oraclefix 100 100 -38.000 -38.000 -38.000 72 0.010
Static 100 100 -38.000 -38.000 -38.000 74 0.009
Death 100 100 -38.000 -38.000 -38.000 222 0.008
Adaptive1 100 100 -38.000 -38.000 -38.000 73 0.009
Adaptive2 100 100 -38.000 -38.000 -38.000 72 0.008
Adaptive3 100 100 -38.000 -38.000 -38.000 73 0.008

asaadi 2.1 Oracleupdate 100 100 694.903 694.972 694.943 8040 0.041
Oraclefix 100 100 694.904 694.972 694.943 1523 0.014
Static 100 100 694.903 694.971 694.944 1804 0.014
Death 100 100 694.903 694.972 694.941 1504 0.013
Adaptive1 100 100 694.903 694.972 694.947 1563 0.014
Adaptive2 100 100 694.904 694.972 694.947 1040 0.012
Adaptive3 100 100 694.903 694.972 694.942 1014 0.011

asaadi 2.2 Oracleupdate 100 100 700.000 700.000 700.000 453 0.010
Oraclefix 100 100 700.000 700.000 700.000 298 0.009
Static 100 100 700.000 700.000 700.000 264 0.009
Death 100 100 700.000 700.000 700.000 344 0.009
Adaptive1 100 100 700.000 700.000 700.000 293 0.010
Adaptive2 100 100 700.000 700.000 700.000 286 0.009
Adaptive3 100 100 700.000 700.000 700.000 266 0.010

asaadi 3.1 Oracleupdate 100 100 37.219 37.223 37.222 22882 0.122
Oraclefix 100 100 37.219 37.223 37.222 16919 0.101
Static 100 100 37.219 37.223 37.222 15591 0.095
Death 0 100 37.280 106.078 57.976 100000 0.555
Adaptive1 100 100 37.220 37.223 37.222 15003 0.118
Adaptive2 100 100 37.220 37.223 37.222 7879 0.056
Adaptive3 100 100 37.219 37.223 37.222 8700 0.059

asaadi 3.2 Oracleupdate 100 100 43.000 43.000 43.000 3558 0.034
Oraclefix 100 100 43.000 43.000 43.000 2565 0.026
Static 100 100 43.000 43.000 43.000 1957 0.021
Death 85 100 43.000 87.000 47.700 29029 0.140
Adaptive1 100 100 43.000 43.000 43.000 1493 0.015
Adaptive2 100 100 43.000 43.000 43.000 1592 0.015
Adaptive3 100 100 43.000 43.000 43.000 2011 0.019

van de Braak 1 Oracleupdate 100 100 1.000 1.000 1.000 10959 0.048
Oraclefix 100 100 1.000 1.000 1.000 12351 0.047
Static 100 100 1.000 1.000 1.000 13943 0.052
Death 31 100 1.000 87271.731 10520.214 55029 0.149
Adaptive1 100 100 1.000 1.000 1.000 11395 0.043
Adaptive2 100 100 1.000 1.000 1.000 8796 0.037
Adaptive3 100 100 1.000 1.000 1.000 9333 0.037

van de Braak 2 Oracleupdate 100 100 -2.718 -2.718 -2.718 10125 0.040
Oraclefix 100 100 -2.718 -2.718 -2.718 18095 0.062
Static 100 100 -2.718 -2.718 -2.718 3619 0.019
Death 83 100 -2.718 99.417 5.765 29602 0.075
Adaptive1 100 100 -2.718 -2.718 -2.718 3567 0.020
Adaptive2 100 100 -2.718 -2.718 -2.718 4652 0.023
Adaptive3 100 100 -2.718 -2.718 -2.718 4349 0.021

van de Braak 3 Oracleupdate 99 100 -89.800 -84.667 -89.744 19432 0.074
Oraclefix 98 100 -89.799 -75.817 -89.645 19143 0.067
Static 6 100 -89.800 -75.817 -76.656 66064 0.208
Death 4 100 -89.794 -16.535 -53.856 68646 0.172
Adaptive1 5 100 -89.795 -75.817 -76.529 66704 0.211
Adaptive2 3 100 -89.794 -75.894 -76.311 68369 0.218
Adaptive3 3 100 -89.799 -75.894 -76.311 68066 0.215

(continued)
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Table 18: Detailed results for the MINLP benchmark problems (continued)
Name Penalty Optimal Feasible fbest fworst fmean evalmean timemean

nvs01 Oracleupdate 1 16 12.470 282.900 95.185 28134 0.062
Oraclefix 3 100 12.470 301.985 101.652 29425 0.059
Static 4 100 12.470 874.996 106.773 29291 0.059
Death 0 52 16.837 263.712 97.661 30000 0.050
Adaptive1 0 56 16.837 290.365 109.072 30000 0.051
Adaptive2 0 56 16.837 263.712 106.042 30000 0.051
Adaptive3 0 51 16.837 839.336 123.617 30000 0.051

nvs02 Oracleupdate 0 13 5.974 6.457 6.166 80000 0.268
Oraclefix 0 100 5.998 8.008 6.633 80000 0.259
Static 0 100 5.998 8.008 6.633 80000 0.255
Death 0 5 6.107 11.066 8.257 80000 0.156
Adaptive1 0 8 6.107 12.075 8.405 80000 0.186
Adaptive2 0 6 6.107 11.066 7.990 80000 0.174
Adaptive3 0 11 6.107 11.066 7.427 80000 0.207

nvs03 Oracleupdate 100 100 16.000 16.000 16.000 146 0.009
Oraclefix 100 100 16.000 16.000 16.000 269 0.008
Static 100 100 16.000 16.000 16.000 255 0.008
Death 100 100 16.000 16.000 16.000 381 0.010
Adaptive1 100 100 16.000 16.000 16.000 116 0.008
Adaptive2 100 100 16.000 16.000 16.000 228 0.008
Adaptive3 100 100 16.000 16.000 16.000 222 0.008

nvs05 Oracleupdate 0 88 6.008 423.126 13.951 80000 0.309
Oraclefix 0 98 62.933 7303.811 663.450 80000 0.283
Static 0 99 11.805 430.723 115.348 80000 0.276
Death 0 1 40.133 40.133 40.133 80000 0.172
Adaptive1 0 3 101.120 237.182 171.207 80000 0.276
Adaptive2 0 1 176.836 176.836 176.836 80000 0.266
Adaptive3 0 7 18.571 393.291 112.836 80000 0.239

nvs07 Oracleupdate 100 100 4.000 4.000 4.000 792 0.008
Oraclefix 100 100 4.000 4.000 4.000 626 0.009
Static 100 100 4.000 4.000 4.000 708 0.009
Death 100 100 4.000 4.000 4.000 1424 0.010
Adaptive1 100 100 4.000 4.000 4.000 603 0.009
Adaptive2 100 100 4.000 4.000 4.000 814 0.008
Adaptive3 100 100 4.000 4.000 4.000 811 0.011

nvs08 Oracleupdate 100 100 23.450 23.452 23.451 3531 0.014
Oraclefix 100 100 23.450 23.452 23.451 3282 0.014
Static 100 100 23.450 23.452 23.451 3598 0.014
Death 58 100 23.450 25.998 23.684 19944 0.040
Adaptive1 100 100 23.450 23.452 23.451 3247 0.014
Adaptive2 100 100 23.450 23.452 23.451 2791 0.013
Adaptive3 100 100 23.450 23.452 23.451 3602 0.015

nvs10 Oracleupdate 100 100 -310.800 -310.800 -310.800 143 0.008
Oraclefix 100 100 -310.800 -310.800 -310.800 138 0.008
Static 100 100 -310.800 -310.800 -310.800 139 0.008
Death 100 100 -310.800 -310.800 -310.800 46 0.008
Adaptive1 100 100 -310.800 -310.800 -310.800 76 0.008
Adaptive2 100 100 -310.800 -310.800 -310.800 64 0.008
Adaptive3 100 100 -310.800 -310.800 -310.800 97 0.008

nvs11 Oracleupdate 100 100 -431.000 -431.000 -431.000 412 0.010
Oraclefix 100 100 -431.000 -431.000 -431.000 327 0.009
Static 100 100 -431.000 -431.000 -431.000 325 0.009
Death 100 100 -431.000 -431.000 -431.000 70 0.008
Adaptive1 100 100 -431.000 -431.000 -431.000 109 0.009
Adaptive2 100 100 -431.000 -431.000 -431.000 88 0.007
Adaptive3 100 100 -431.000 -431.000 -431.000 129 0.008

nvs12 Oracleupdate 100 100 -481.200 -481.200 -481.200 748 0.009
Oraclefix 100 100 -481.200 -481.200 -481.200 454 0.009
Static 100 100 -481.200 -481.200 -481.200 441 0.009
Death 100 100 -481.200 -481.200 -481.200 95 0.008
Adaptive1 100 100 -481.200 -481.200 -481.200 150 0.008
Adaptive2 100 100 -481.200 -481.200 -481.200 134 0.008
Adaptive3 100 100 -481.200 -481.200 -481.200 171 0.008
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Table 19: Detailed results for the benchmark problems (continued)
Name Penalty Optimal Feasible fbest fworst fmean evalmean timemean

nvs13 Oracleupdate 100 100 -585.200 -585.200 -585.200 1871 0.014
Oraclefix 100 100 -585.200 -585.200 -585.200 1232 0.012
Static 100 100 -585.200 -585.200 -585.200 956 0.011
Death 100 100 -585.200 -585.200 -585.200 425 0.009
Adaptive1 100 100 -585.200 -585.200 -585.200 434 0.010
Adaptive2 100 100 -585.200 -585.200 -585.200 481 0.009
Adaptive3 100 100 -585.200 -585.200 -585.200 471 0.010

nvs14 Oracleupdate 6 98 -0.404 -0.377 -0.395 75992 0.252
Oraclefix 9 100 -0.404 -0.389 -0.400 76032 0.245
Static 9 100 -0.404 -0.389 -0.400 76032 0.245
Death 0 46 -0.401 -0.372 -0.389 80000 0.154
Adaptive1 0 49 -0.401 -0.372 -0.390 80000 0.167
Adaptive2 0 47 -0.401 -0.372 -0.389 80000 0.157
Adaptive3 4 59 -0.404 -0.372 -0.394 77235 0.188

nvs15 Oracleupdate 100 100 1.000 1.000 1.000 319 0.009
Oraclefix 100 100 1.000 1.000 1.000 286 0.008
Static 100 100 1.000 1.000 1.000 295 0.008
Death 100 100 1.000 1.000 1.000 928 0.009
Adaptive1 100 100 1.000 1.000 1.000 510 0.009
Adaptive2 100 100 1.000 1.000 1.000 409 0.009
Adaptive3 100 100 1.000 1.000 1.000 236 0.009

nvs17 Oracleupdate 95 100 -1100.400 -1099.000 -1100.330 16728 0.079
Oraclefix 100 100 -1100.400 -1100.400 -1100.400 3133 0.022
Static 100 100 -1100.400 -1100.400 -1100.400 2453 0.019
Death 100 100 -1100.400 -1100.400 -1100.400 2681 0.018
Adaptive1 100 100 -1100.400 -1100.400 -1100.400 1756 0.014
Adaptive2 100 100 -1100.400 -1100.400 -1100.400 2083 0.017
Adaptive3 100 100 -1100.400 -1100.400 -1100.400 1582 0.015

nvs18 Oracleupdate 100 100 -778.400 -778.400 -778.400 6535 0.031
Oraclefix 100 100 -778.400 -778.400 -778.400 1824 0.014
Static 100 100 -778.400 -778.400 -778.400 1422 0.013
Death 100 100 -778.400 -778.400 -778.400 966 0.010
Adaptive1 100 100 -778.400 -778.400 -778.400 814 0.011
Adaptive2 100 100 -778.400 -778.400 -778.400 1010 0.012
Adaptive3 100 100 -778.400 -778.400 -778.400 783 0.011

nvs19 Oracleupdate 99 100 -1098.400 -1097.600 -1098.392 22328 0.118
Oraclefix 100 100 -1098.400 -1098.400 -1098.400 4864 0.032
Static 100 100 -1098.400 -1098.400 -1098.400 4243 0.028
Death 100 100 -1098.400 -1098.400 -1098.400 3347 0.024
Adaptive1 100 100 -1098.400 -1098.400 -1098.400 3180 0.023
Adaptive2 100 100 -1098.400 -1098.400 -1098.400 3252 0.023
Adaptive3 100 100 -1098.400 -1098.400 -1098.400 3174 0.022

nvs20 Oracleupdate 2 100 230.945 307.139 262.930 158944 1.140
Oraclefix 0 100 231.180 259.882 242.667 160000 1.121
Static 3 100 230.937 259.249 240.983 157726 1.139
Death 0 100 242.736 493.010 319.407 160000 0.944
Adaptive1 4 100 230.933 259.211 240.242 158479 1.146
Adaptive2 14 100 230.940 244.605 239.298 153730 1.123
Adaptive3 2 100 230.945 244.508 240.879 159412 1.158

nvs21 Oracleupdate 88 100 -5.686 -5.265 -5.652 13667 0.034
Oraclefix 96 100 -5.686 -5.096 -5.665 9470 0.025
Static 99 100 -5.686 -5.096 -5.679 8054 0.022
Death 95 100 -5.686 -5.096 -5.661 8880 0.024
Adaptive1 98 100 -5.686 -5.096 -5.675 7328 0.021
Adaptive2 40 100 -5.686 -0.216 -5.177 19611 0.044
Adaptive3 67 100 -5.686 -4.824 -5.492 16468 0.038

nvs22 Oracleupdate 89 98 6.058 139.337 7.864 30701 0.122
Oraclefix 0 100 8.221 597.885 181.332 80000 0.291
Static 0 100 6.828 513.734 92.341 80000 0.279
Death 0 7 8.367 103.916 42.941 80000 0.176
Adaptive1 0 9 8.367 97.518 31.661 80000 0.196
Adaptive2 0 8 8.367 131.718 58.004 80000 0.186
Adaptive3 0 12 10.481 135.203 49.820 80000 0.223
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Table 20: Detailed results for the benchmark problems (continued)
Name Penalty Optimal Feasible fbest fworst fmean evalmean timemean

nvs23 Oracleupdate 100 100 -1125.200 -1125.200 -1125.200 14239 0.092
Oraclefix 100 100 -1125.200 -1125.200 -1125.200 2787 0.025
Static 100 100 -1125.200 -1125.200 -1125.200 1918 0.019
Death 100 100 -1125.200 -1125.200 -1125.200 4365 0.031
Adaptive1 100 100 -1125.200 -1125.200 -1125.200 1673 0.017
Adaptive2 100 100 -1125.200 -1125.200 -1125.200 1874 0.019
Adaptive3 100 100 -1125.200 -1125.200 -1125.200 1997 0.020

nvs24 Oracleupdate 48 100 -1033.200 -1030.800 -1032.452 71419 0.489
Oraclefix 98 100 -1033.200 -1032.000 -1033.176 21248 0.152
Static 100 100 -1033.200 -1033.200 -1033.200 16061 0.115
Death 99 100 -1033.200 -1032.000 -1033.188 17360 0.119
Adaptive1 99 100 -1033.200 -1032.000 -1033.188 16065 0.115
Adaptive2 100 100 -1033.200 -1033.200 -1033.200 13610 0.098
Adaptive3 100 100 -1033.200 -1033.200 -1033.200 16820 0.121

duran/grossmann 1 Oracleupdate 100 100 6.009 6.010 6.010 10001 0.040
Oraclefix 100 100 6.009 6.010 6.010 3203 0.018
Static 100 100 6.009 6.010 6.010 4767 0.022
Death 0 100 7.416 9.996 9.970 60000 0.167
Adaptive1 100 100 6.008 6.010 6.010 4571 0.021
Adaptive2 100 100 6.009 6.010 6.010 3628 0.019
Adaptive3 100 100 6.008 6.010 6.010 4276 0.021

duran/grossmann 2 Oracleupdate 27 97 73.030 145.561 80.393 95846 0.472
Oraclefix 0 100 73.071 86.112 76.253 110000 0.542
Static 1 100 73.038 86.111 78.342 109352 0.527
Death 0 8 108.695 112.064 110.901 110000 0.299
Adaptive1 1 100 73.042 95.205 78.316 109363 0.527
Adaptive2 3 100 73.042 86.111 79.492 108519 0.523
Adaptive3 16 100 73.029 95.205 77.456 104745 0.505

duran/grossmann 3 Oracleupdate 16 64 68.006 98.877 70.987 154559 1.103
Oraclefix 0 100 68.078 85.499 76.835 170000 1.259
Static 0 100 69.032 99.589 79.114 170000 1.220
Death 0 71 78.265 126.354 104.944 170000 0.690
Adaptive1 0 100 68.277 108.683 84.780 170000 1.227
Adaptive2 0 100 68.120 108.683 79.699 170000 1.228
Adaptive3 5 100 68.011 99.589 77.588 166159 1.194

floudas 1 Oracleupdate 84 100 7.667 8.740 7.730 19059 0.059
Oraclefix 87 100 7.667 7.931 7.701 16952 0.050
Static 78 100 7.667 7.931 7.725 21943 0.063
Death 60 100 7.667 8.240 7.791 21837 0.045
Adaptive1 61 100 7.667 8.240 7.788 24022 0.056
Adaptive2 56 100 7.667 8.240 7.802 26920 0.064
Adaptive3 59 100 7.667 8.240 7.794 23591 0.056

floudas 2 Oracleupdate 100 100 1.076 1.077 1.076 2693 0.013
Oraclefix 100 100 1.076 1.077 1.077 3362 0.014
Static 100 100 1.076 1.077 1.077 2941 0.013
Death 84 100 1.076 1.250 1.103 12826 0.027
Adaptive1 96 100 1.076 1.250 1.082 4682 0.015
Adaptive2 100 100 1.076 1.077 1.076 2414 0.013
Adaptive3 100 100 1.076 1.077 1.077 2562 0.013

floudas 3 Oracleupdate 100 100 4.579 4.580 4.580 3586 0.020
Oraclefix 100 100 4.579 4.580 4.580 3628 0.020
Static 100 100 4.579 4.580 4.580 2127 0.016
Death 100 100 4.579 4.580 4.580 7932 0.031
Adaptive1 100 100 4.579 4.580 4.580 2254 0.015
Adaptive2 100 100 4.579 4.580 4.580 2123 0.014
Adaptive3 100 100 4.579 4.580 4.580 2341 0.015

floudas 4 Oracleupdate 0 21 -0.875 -0.602 -0.735 110000 0.520
Oraclefix 0 100 -0.884 -0.627 -0.726 110000 0.501
Static 0 100 -0.838 -0.639 -0.721 110000 0.503
Death 0 85 -0.804 -0.602 -0.642 110000 0.283
Adaptive1 0 85 -0.804 -0.602 -0.643 110000 0.308
Adaptive2 0 85 -0.804 -0.602 -0.644 110000 0.297
Adaptive3 0 89 -0.838 -0.602 -0.661 110000 0.334
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Table 21: Detailed results for the benchmark problems (continued)
Name Penalty Optimal Feasible fbest fworst fmean evalmean timemean

floudas 5 Oracleupdate 100 100 31.000 31.000 31.000 23 0.008
Oraclefix 100 100 31.000 31.000 31.000 37 0.008
Static 100 100 31.000 31.000 31.000 36 0.008
Death 100 100 31.000 31.000 31.000 79 0.008
Adaptive1 100 100 31.000 31.000 31.000 35 0.007
Adaptive2 100 100 31.000 31.000 31.000 35 0.008
Adaptive3 100 100 31.000 31.000 31.000 35 0.008

floudas 6 Oracleupdate 100 100 -170000.611 -169983.032 -169993.317 916 0.010
Oraclefix 100 100 -170000.647 -169983.183 -169991.543 382 0.009
Static 100 100 -170000.509 -169983.068 -169989.930 539 0.009
Death 100 100 -170000.384 -169983.160 -169990.790 986 0.010
Adaptive1 100 100 -170000.509 -169983.068 -169990.458 471 0.009
Adaptive2 100 100 -170000.603 -169983.445 -169992.573 476 0.008
Adaptive3 100 100 -170000.452 -169983.001 -169990.942 500 0.008

ST E36 Oracleupdate 0 100 -243.857 -147.000 -184.577 20000 0.045
Oraclefix 0 100 -243.857 -198.795 -224.984 20000 0.043
Static 0 100 -243.857 -198.795 -225.354 20000 0.042
Death 0 100 -237.689 -166.508 -177.552 20000 0.040
Adaptive1 0 100 -237.689 -166.508 -178.215 20000 0.040
Adaptive2 0 99 -237.689 -166.508 -196.989 20000 0.042
Adaptive3 0 100 -237.689 -166.508 -180.756 20000 0.040

ST E38 Oracleupdate 100 100 7196.874 7198.436 7197.741 4156 0.018
Oraclefix 100 100 7197.081 7198.446 7198.160 10413 0.029
Static 100 100 7197.067 7198.444 7198.138 5664 0.020
Death 0 100 7200.070 7446.945 7347.089 40000 0.087
Adaptive1 100 100 7196.995 7198.445 7198.138 4633 0.019
Adaptive2 100 100 7197.045 7198.437 7197.946 2185 0.013
Adaptive3 100 100 7196.953 7198.445 7197.976 2601 0.013

ST E40 Oracleupdate 74 100 28.243 50.971 28.902 20837 0.053
Oraclefix 16 100 28.243 33.485 28.956 36303 0.080
Static 16 100 28.243 33.485 28.952 36303 0.081
Death 6 100 28.243 46.556 33.970 37726 0.068
Adaptive1 6 100 28.243 46.556 32.449 38028 0.072
Adaptive2 6 100 28.243 46.556 33.840 37724 0.070
Adaptive3 11 100 28.243 46.556 31.240 37250 0.075

ST MIQP1 Oracleupdate 100 100 281.000 281.000 281.000 25 0.008
Oraclefix 100 100 281.000 281.000 281.000 23 0.008
Static 100 100 281.000 281.000 281.000 22 0.008
Death 100 100 281.000 281.000 281.000 45 0.008
Adaptive1 100 100 281.000 281.000 281.000 23 0.009
Adaptive2 100 100 281.000 281.000 281.000 20 0.009
Adaptive3 100 100 281.000 281.000 281.000 22 0.007

ST MIQP2 Oracleupdate 91 92 2.000 5.000 2.033 1600 0.012
Oraclefix 90 92 2.000 7.000 2.087 1659 0.011
Static 92 96 2.000 24.000 2.521 2940 0.014
Death 18 95 2.000 7.000 4.453 36662 0.066
Adaptive1 100 100 2.000 2.000 2.000 357 0.009
Adaptive2 100 100 2.000 2.000 2.000 323 0.008
Adaptive3 100 100 2.000 2.000 2.000 431 0.009

ST MIQP3 Oracleupdate 50 100 -6.000 0.000 -3.060 11356 0.022
Oraclefix 52 100 -6.000 0.000 -3.240 11759 0.026
Static 71 100 -6.000 0.000 -4.260 6660 0.017
Death 0 100 0.000 0.000 0.000 20000 0.035
Adaptive1 72 100 -6.000 0.000 -4.320 8009 0.020
Adaptive2 69 100 -6.000 0.000 -4.140 10253 0.023
Adaptive3 71 100 -6.000 0.000 -4.260 10733 0.022

ST MIQP4 Oracleupdate 63 100 -4574.043 -4.000 -4355.223 37472 0.093
Oraclefix 0 100 -4573.173 -2788.504 -4302.065 60000 0.142
Static 3 100 -4573.611 -4508.469 -4566.237 58954 0.163
Death 0 100 0.000 0.000 0.000 60000 0.095
Adaptive1 4 100 -4574.016 -4.000 -1310.779 57954 0.133
Adaptive2 100 100 -4573.975 -4573.544 -4573.676 9351 0.032
Adaptive3 97 100 -4574.034 -4573.387 -4573.697 7507 0.027
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Table 22: Detailed results for the benchmark problems (continued)
Name Penalty Optimal Feasible fbest fworst fmean evalmean timemean

ST MIQP5 Oracleupdate 18 100 -333.890 -0.026 -89.378 65417 0.222
Oraclefix 0 100 -328.184 -159.494 -253.689 70000 0.218
Static 0 100 -320.480 -132.144 -238.474 70000 0.216
Death 0 100 -2.947 -0.878 -1.389 70000 0.148
Adaptive1 0 100 -303.702 -7.087 -21.991 70000 0.211
Adaptive2 0 100 -325.025 -8.102 -185.534 70000 0.221
Adaptive3 2 100 -333.870 -161.977 -292.891 69835 0.216

ST TEST1 Oracleupdate 100 100 0.000 0.000 0.000 13 0.008
Oraclefix 100 100 0.000 0.000 0.000 14 0.008
Static 100 100 0.000 0.000 0.000 13 0.008
Death 100 100 0.000 0.000 0.000 8 0.008
Adaptive1 100 100 0.000 0.000 0.000 13 0.008
Adaptive2 100 100 0.000 0.000 0.000 13 0.007
Adaptive3 100 100 0.000 0.000 0.000 13 0.007

ST TEST2 Oracleupdate 97 97 -9.250 -9.250 -9.250 281 0.009
Oraclefix 95 95 -9.250 -9.250 -9.250 1047 0.011
Static 100 100 -9.250 -9.250 -9.250 89 0.008
Death 0 0 na na na na na
Adaptive1 100 100 -9.250 -9.250 -9.250 476 0.009
Adaptive2 100 100 -9.250 -9.250 -9.250 355 0.008
Adaptive3 100 100 -9.250 -9.250 -9.250 451 0.010

ST TEST4 Oracleupdate 94 100 -7.000 -5.000 -6.930 5631 0.024
Oraclefix 100 100 -7.000 -7.000 -7.000 937 0.010
Static 100 100 -7.000 -7.000 -7.000 729 0.010
Death 0 0 na na na na na
Adaptive1 100 100 -7.000 -7.000 -7.000 860 0.011
Adaptive2 100 100 -7.000 -7.000 -7.000 803 0.012
Adaptive3 100 100 -7.000 -7.000 -7.000 871 0.011

ST TEST5 Oracleupdate 100 100 -110.000 -110.000 -110.000 257 0.009
Oraclefix 100 100 -110.000 -110.000 -110.000 194 0.008
Static 100 100 -110.000 -110.000 -110.000 221 0.009
Death 100 100 -110.000 -110.000 -110.000 597 0.010
Adaptive1 100 100 -110.000 -110.000 -110.000 201 0.009
Adaptive2 100 100 -110.000 -110.000 -110.000 218 0.009
Adaptive3 100 100 -110.000 -110.000 -110.000 214 0.008

ST TEST6 Oracleupdate 100 100 471.000 471.000 471.000 367 0.010
Oraclefix 100 100 471.000 471.000 471.000 284 0.009
Static 100 100 471.000 471.000 471.000 359 0.009
Death 100 100 471.000 471.000 471.000 2552 0.017
Adaptive1 100 100 471.000 471.000 471.000 341 0.009
Adaptive2 100 100 471.000 471.000 471.000 275 0.010
Adaptive3 100 100 471.000 471.000 471.000 294 0.010

ST TEST8 Oracleupdate 18 94 -29605.000 20019.000 -28364.447 216275 2.147
Oraclefix 0 100 -12747.000 41715.000 9559.870 240000 2.282
Static 0 100 -16953.000 28673.000 5143.690 240000 2.274
Death 1 98 -29605.000 29383.000 -11421.878 239486 1.145
Adaptive1 3 100 -29605.000 14247.000 -22419.250 237622 1.474
Adaptive2 3 100 -29605.000 -7997.000 -22628.620 238601 1.413
Adaptive3 4 100 -29605.000 19728.000 -24619.280 235769 1.833

ST TESTGR1 Oracleupdate 96 100 -12.812 -12.771 -12.810 41437 0.171
Oraclefix 100 100 -12.812 -12.810 -12.811 8059 0.042
Static 100 100 -12.812 -12.810 -12.811 7315 0.038
Death 100 100 -12.812 -12.810 -12.811 6580 0.035
Adaptive1 100 100 -12.812 -12.810 -12.811 7301 0.037
Adaptive2 100 100 -12.812 -12.810 -12.811 4676 0.027
Adaptive3 100 100 -12.812 -12.810 -12.811 6209 0.033

ST TESTGR3 Oracleupdate 5 100 -20.590 -20.220 -20.436 196512 1.567
Oraclefix 16 100 -20.590 -20.467 -20.554 186596 1.567
Static 73 100 -20.590 -20.570 -20.585 112338 0.905
Death 26 100 -20.590 -20.455 -20.562 164749 1.342
Adaptive1 76 100 -20.590 -20.570 -20.586 110635 0.891
Adaptive2 97 100 -20.590 -20.570 -20.590 66634 0.544
Adaptive3 73 100 -20.590 -20.570 -20.585 113526 0.914
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Table 23: Detailed results for the benchmark problems (continued)
Name Penalty Optimal Feasible fbest fworst fmean evalmean timemean

ST TESTPH4 Oracleupdate 100 100 -80.500 -80.500 -80.500 207 0.008
Oraclefix 100 100 -80.500 -80.500 -80.500 213 0.008
Static 100 100 -80.500 -80.500 -80.500 220 0.009
Death 100 100 -80.500 -80.500 -80.500 84 0.008
Adaptive1 100 100 -80.500 -80.500 -80.500 114 0.008
Adaptive2 100 100 -80.500 -80.500 -80.500 82 0.007
Adaptive3 100 100 -80.500 -80.500 -80.500 158 0.008

TLN2 Oracleupdate 100 100 2.300 2.300 2.300 614 0.010
Oraclefix 100 100 2.300 2.300 2.300 660 0.010
Static 100 100 2.300 2.300 2.300 517 0.010
Death 100 100 2.300 2.300 2.300 4767 0.020
Adaptive1 100 100 2.300 2.300 2.300 525 0.009
Adaptive2 100 100 2.300 2.300 2.300 2213 0.014
Adaptive3 100 100 2.300 2.300 2.300 476 0.011

ALAN Oracleupdate 3 36 2.924 4.212 3.032 77063 0.266
Oraclefix 1 100 2.925 4.218 3.419 79436 0.259
Static 1 100 2.925 4.217 3.413 79436 0.260
Death 0 3 2.930 2.989 2.967 80000 0.141
Adaptive1 0 6 2.930 4.208 3.229 80000 0.195
Adaptive2 0 4 2.930 2.996 2.974 80000 0.172
Adaptive3 0 10 2.930 4.219 3.246 80000 0.209

MEANVARX Oracleupdate 1 9 14.342 17.449 15.133 348623 4.194
Oraclefix 0 84 15.155 26.652 19.879 350000 4.595
Static 0 87 15.152 26.153 20.002 350000 4.588
Death 0 0 na na na na na
Adaptive1 0 0 na na na na na
Adaptive2 0 0 na na na na na
Adaptive3 0 4 16.340 24.761 21.509 350000 4.344

OAER Oracleupdate 36 91 -1.924 3.492 -0.845 70105 0.288
Oraclefix 1 100 -1.923 -0.001 -0.492 89797 0.340
Static 0 100 -1.913 -0.001 -0.408 90000 0.340
Death 1 14 -1.924 -0.001 -0.633 87904 0.250
Adaptive1 0 100 -1.595 -0.001 -0.022 90000 0.363
Adaptive2 2 100 -1.923 -0.001 -0.604 89313 0.342
Adaptive3 1 100 -1.923 -0.001 -0.526 89681 0.340

MIP-EX Oracleupdate 100 100 3.500 3.500 3.500 4324 0.021
Oraclefix 100 100 3.500 3.500 3.500 2366 0.013
Static 100 100 3.500 3.500 3.500 2895 0.015
Death 100 100 3.500 3.500 3.500 919 0.009
Adaptive1 100 100 3.500 3.500 3.500 2392 0.014
Adaptive2 100 100 3.500 3.500 3.500 1431 0.012
Adaptive3 100 100 3.500 3.500 3.500 1560 0.011
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