
Nonlinear mixed integer based
Optimization Technique for Space

Applications

by

Martin Schlueter

A thesis submitted to
The University of Birmingham

for the degree of
Doctor of Philosophy

School of Mathematics
The University of Birmingham
May 2012

Abstract

In this thesis a new algorithm for mixed integer nonlinear programming (MINLP) is

developed and applied to several real world applications with special focus on space ap-

plications. The algorithm is based on two main components, which are an extension

of the Ant Colony Optimization metaheuristic and the Oracle Penalty Method for con-

straint handling. A sophisticated implementation (named MIDACO) of the algorithm is

used to numerically demonstrate the usefulness and performance capabilities of the here

developed novel approach on MINLP. An extensive amount of numerical results on both,

comprehensive sets of benchmark problems (with up to 100 test instances) and several

real world applications, are presented and compared to results obtained by concurrent

methods. It can be shown, that the here developed approach is not only fully competi-

tive with established MINLP algorithms, but is even able to outperform those regarding

global optimization capabilities and cpu runtime performance. Furthermore, the algo-

rithm is able to solve challenging space applications, that are considered here as mixed

integer problems for the very first time.

Acknowledgements

Firstly I would like to thank my supervisor Dr. Jan Joachim Rückmann for enabling this

thesis and his distinguished advice and continuing support. Also I would like to thank

Prof. Matthias Gerdts for his support and great help on technical matters. I am very

grateful to Prof. Klaus Schittkowski from the University of Bayreuth for his constant

endorsement and advice over many years. Dr. Jose Alberto Egea Larrosa deserves my

gratefulness for introducing me to evolutionary programming and his immense personal

support. To Dr. Masaharu Munetomo and his workgroup I am much obliged for the

hospitality and kindly work atmosphere, offered to me at the Hokkaido University. In

alphabetical order and without any claim of completeness, I would like to thank the

following colleagues and friends for many fruitful intellectual discussions: Dr. Antonio

Alvarez Alonso, Marco Banse, Karl Dvorsky, Oliver Exler, Dr. Ben Fairbairn, Dr. Bjoern

Huepping, Eike Huesing, Dr. Sven Joachim Kimmerle, Dr. Martin Kunkel, Gomo Pan-

ganai, Eggert Rose, Heiko Schwartz. Finally I would like to express my deepest gratitude

to Tomoko Ishikawa and my Family for their support and help in uncountable ways.

I also thankfully acknowledge the financial and professional support by the European

Space Agency, Astrium Limited and the University of Birmingham.

Contents

List of Tables 1

List of Figures 6

Notation 8

Introduction 10

1 Mixed Integer Nonlinear Programming 13

1.1 Branch and Bound Method . 14

1.2 Outer Approximation . 16

1.3 Generalized Benders Decomposition . 19

1.4 Other approaches on MINLP . 20

1.4.1 Extended Cutting Plane Method 20

1.4.2 SQP-based Method . 21

1.4.3 Mesh Adaptive Direct Search Method 21

1.4.4 Stochastic Metaheuristics and Hybrid Algorithms 22

2 Ant Colony Optimization 24

2.1 ACO for MINLP General Definitions . 25

2.2 An Explicit ACO Operator for MINLP . 27

2.3 ACO for MINLP Pseudo Code . 33

2.4 A Illustrative Example of ACO for MINLP 35

2.4.1 Numerical Example Calculation . 36

2.4.2 Graphical Illustration of Multi-Kernel Gauss PDF’s 41

3 The Oracle Penalty Method 43

3.1 Examples of Common Penalty Methods . 45

3.2 Development of the Oracle Penalty Method 48

3.2.1 Basic Oracle Penalty Function . 48

3.2.2 Extensions for the Basic Oracle Penalty Function 52

3.2.3 Extended Oracle Penalty Function 58

3.2.4 Update Rule and Implementation 60

4 MIDACO Software 64

4.1 Reverse Communication and Distributed Computing 66

4.2 Parameters and Print Options . 68

4.3 Hybridization with SQP . 71

5 Numerical Results on MINLP Benchmark Sets 73

5.1 Evaluation of the Oracle Penalty Method 74

5.2 MIDACO Performance Comparison with MISQP 77

5.2.1 Performance of SQP-based Algorithms 78

5.2.2 MIDACO Performance on 100 MINLP Benchmarks 79

5.3 MIDACO Performance Comparison with BONMIN and COUENNE 82

5.4 MIDACO Performance using Parallelization 84

6 Numerical Results on Real World Applications 88

6.1 Optimal Control of an F8-Aircraft Manoeuvre 90

6.2 Thermal Insulation System Application (Heat Shield Problem) 95

6.3 Satellite Constellation Optimization . 102

6.4 ESA/ACT: Global Trajectory Optimization Problems 103

6.5 Interplanetary Space Mission Design . 104

6.5.1 Space Mission Layout . 105

6.5.2 Numerical Results . 112

6.5.3 Space Mission Design: Conclusions 118

6.6 Multiple-Stage Launch Vehicle Ascent Problem 118

6.6.1 Vehicle Properties . 119

6.6.2 Mixed Integer Extensions . 125

6.6.3 Additional Constraints . 126

6.6.4 Numerical Results . 127

6.6.5 Launch Vehicle: Conclusions and Interpretation 135

Conclusions 137

Appendix A 139

Appendix B 151

Appendix C 155

Bibliography 161

List of Tables

3.1 Examples of residual functions . 45

3.2 Examples of common penalty functions . 46

4.1 Problem dimension scalability by MIDACO 66

5.1 Penalty functions and their parameters considered for numerical results . . 75

5.2 Abbreviations for Table 5.3 . 76

5.3 Overall performance of different penalty methods 76

5.4 Performance of SQP-based algorithms on 100 MINLP benchmarks 78

5.5 MIDACO Performance on 100 MINLP Benchmarks 81

5.6 BONMIN, COUENNE and MIDACO on 66 MINLP benchmarks 84

5.7 Impact of L given a maximal budget of 100,000 blocks 86

1

6.1 Real world applications solved by MIDACO 89

6.2 Results of 10 test runs on F8-Aircraft using MIDACO (default) and SQP 93

6.3 Results of 10 test runs on F8-Aircraft using MIDACO (tuned) and SQP . 93

6.4 F-8 Aircaft control problem solutions . 94

6.5 ACOmi setups regarding local solver MISQP 97

6.6 Results for the Heatshield problem . 99

6.7 Best solution (x∗, y∗) by NOMADm, MITS and ACOmi 100

6.8 Starting Point and MIDACO Solution . 102

6.9 MIDACO 0.3 performance on ESA/ACT GTOP database problems 104

6.10 Planet numeration . 106

6.11 Optimization variables x (continuous) and y (integer) with bounds 107

6.12 Gravitation parameter and apsis for Earth and Jupiter 108

6.13 Notation for constraints . 109

6.14 Abbreviations for Table 6.15 . 113

6.15 10 test runs by MIDACO on mission model with 3% sphere of action . . . 113

2

6.16 Comparison between original Galileo and MIDACO Missions 115

6.17 Vehicle mass and propulsion properties . 120

6.18 Constants used in the launch vehicle model 122

6.19 Abbreviations for Table . 125

6.20 Abbreviations for Table 6.21 . 128

6.21 Enumeration over all (feasible) booster configurations with B1 > 6 129

6.22 30 runs by MIDACO (max time = 600) + SQP (max iter=1000) 131

6.23 30 runs by MIDACO (max time = 7200) + SQP (max iter=1000) 132

24 Abbreviations for Table 25 . 139

25 Information on the benchmark problems 139

26 Information on the benchmark problems (continued) 140

27 Abbreviations for Table 29 . 141

28 Detailed results for the constrained benchmark problems 141

29 Detailed results for the constrained benchmark problems (continued) . . . 142

30 Detailed results for the constrained benchmark problems (continued) . . . 143

3

31 Detailed results for the constrained benchmark problems (continued) . . . 144

32 Detailed results for the constrained benchmark problems (continued) . . . 145

33 Detailed results for the constrained benchmark problems (continued) . . . 146

34 Detailed results for the constrained benchmark problems (continued) . . . 147

35 Detailed results for the constrained benchmark problems (continued) . . . 148

36 Detailed results for the constrained benchmark problems (continued) . . . 149

37 Detailed results for the constrained benchmark problems (continued) . . . 150

38 Benchmark names with corresponding library number 151

39 Individual MIDACO results on 100 MINLP problems 152

40 Individual MIDACO results on 100 MINLP problems (continued) 153

41 Individual MIDACO results on 100 MINLP problems (continued) 154

42 Summary of results presented in Table 39 154

43 Individual results by BONMIN, COUENNE and MIDACO 156

44 Individual results by BONMIN, COUENNE and MIDACO (continued) . . 157

45 Individual results by BONMIN, COUENNE and MIDACO (continued) . . 158

4

46 Individual results by BONMIN, COUENNE and MIDACO (continued) . . 159

47 Individual results by BONMIN, COUENNE and MIDACO (continued) . . 160

5

List of Figures

2.1 Three individual Gauss PDF’s and their multi-kernel PDF 29

2.2 Discretized version of the multi-kernel PDF shown in Figure 2.1 30

2.3 Multi-Kernel PDF’s G1 (for x1) and G2 (for y1) from Subsection 2.4.1 . . 42

3.1 The basic oracle penalty function for Ω = 0 51

3.2 The extended oracle penalty function for Ω = 0 59

4.1 The reverse communication loop over a block of L iterates (x, y) 67

6.1 Differential states corresponding to best known solution 94

6.2 Frequency histogram of feasible solutions for the ’Heat Shield Problem’ . . 97

6.3 Convergence curves of MISQP and ACOmi1 for the Heatschield problem . . 101

6.4 MGA-DSM space mission layout regarding arcs and major events 106

6

6.5 Space trajectories of the NASA Galileo mission and MIDACO Mission1 . . 117

6.6 Illustration of the control and physical behavior of the launch vehicle . . . 134

7

Notation

R set of real numbers

R+
0 set of positive real numbers (including zero)

Z set of integer numbers

N set of natural numbers (without zero)

N0 set of natural numbers (including zero)

ncon dimension of continuous variables

nint dimension of integer variables

n dimension of continuous and integer variables (n = ncon + nint)

x continuous decision variables of dimension ncon

y integer decision variables of dimension nint

xlower lower bounds for decision variables x

xupper upper bounds for decision variables x

ylower lower bounds for decision variables y

yupper upper bounds for decision variables y

f(x, y) objective function

me number of equality constraints

m number of equality and inequality constraints (me 6 m)

g(x, y) constraint function

p(x, y) penalty function

res(x, y) residuum for constraint violation

P continuous probability density function (cPDF)

Q discrete probability density function (dPDF)

G general probability density function (PDF)

K feasible set

8

G generation of individual ants

P population of several generations

S solution archive of individual ants

v size of generation G

w size of population P

K size of solution archive S

E evolutionary operator

EACO evolutionary operator for (mixed integer) Ant Colony Optimization

f̃(x, y) fitness function

ω weights for G

σ standard deviation for G

µ mean value for G

d·e gaussian bracket (ceil)

b·c gaussian bracket (floor)

9

Introduction

Mathematical programming (also called optimization) is an important field in applied

mathematics and is widely used in industrial and academic areas. Mixed integer nonlinear

programs (MINLP) are one of the most general types of finite-dimensional, single-objective

mathematical programs. Containing both, continuous and integer decision variables, and

without any limitation to the complexity of either the objective function or the constraints,

these problems are classified as NP-hard (see [23]). In Definition 1 the feasible set K

of a mixed integer optimization problem is introduced based on equality and inequality

constraints. The feasible set K is used in the following definition of the MINLP.

Definition 1 [Feasible Set K]

Let g be a function of the form g : Rncon×Znint −→ R∪{±∞}. Then the feasible set K is

defined by m functions of type g as K = {(x, y) ∈ Rncon ×Znint| gi(x, y) = 0 ∧ gj(x, y) >

0 : i = 1, ...,me, j = me + 1, ...,m}. Here me 6 m denotes the number of equality

constraints, whereas m denotes the number of equality and inequality constraints in total.

10

The general MINLP is formally stated in Definition 2.

Definition 2 [Mixed Integer Nonlinear Program (MINLP)]

Let f be a function of the form f : Rncon ×Znint −→ R∪{±∞} and K be a subset of the

form K ⊆ Rncon × Znint. Then a mixed integer nonlinear program (MINLP) is given by

finding a solution (x∗, y∗) ∈ K so that f(x∗, y∗) 6 f(x, y) ∀(x, y) ∈ K.

For more than half of a century algorithmic approaches have been developed to solve

MINLP problems (see [34]). While classic approaches for MINLP (see Chapter 1) were

strictly deterministic, stochastic algorithms gain more and more attention in recent years

(see [36] or [54]). In this thesis, a conceptually new stochastic algorithm is developed

for the general MINLP problem stated in Definition 2. It is based on a novel extension

of the well known stochastic metaheuristic called Ant Colony Optimization (see Chapter

2) and the recently developed Oracle Penalty Method (see Chapter 3). As a stochastic

algorithm it is fundamentally different from classic approaches on MINLP. Whereby its

main advantage can be seen in its robustness regarding critical function properties (like

non-convexity or discontinuities), while its main disadvantage is considered its heuristic

nature. The developed algorithm is implemented in a software called MIDACO (see

Chapter 4). Due to the heuristic nature of the algorithm, large parts of this thesis are

dedicated to present extensive and rigorous numerical results in order to evaluate the

practical usefulness and performance of the proposed algorithm. Besides numerical results

on large MINLP test sets (see Chapter 5), a considerable amount of real world applications

is presented in addition (see Chapter 6). In compliance with the thesis topic, the focus

here on real world problems is specifically on space and aerospace applications (see Table

6.1).

11

The mixed integer extension on Ant Colony Optimization can be found in [43] and [44].

The Oracle Penalty Method is available as individual contribution in [45]. An introduction

to the MIDACO software is given in [47] and further information can be found on the

MIDACO homepage [42]. The mentioned publications do also contain large parts of the

numerical results presented in Chapter 5 and Chapter 6.

The scientific relevance of the optimization algorithm developed in this thesis is also in-

dicated by the growing number of independent academic users of the MIDACO software

from various academic fields. MIDACO is for example in use at the University of Calgary

(Canada), University College Dublin (Ireland), University of Illinois (USA), University

of Rhode Island (USA), University of Texas (USA), Osaka University (Japan), Tokyo

University of Agriculture and Technology (Japan), ESPCI Paris Tech (France), XLIM

Limoges (France), TNO Delft (Netherland), University of Bayreuth (Germany), Max

Planck Institut Magdeburg (Germany) and Instituto Politecnico de Setubal (Portugal).

This thesis is structured as follows: Firstly an overview on different approaches on MINLP

is given in Chapter 1. Chapter 2 describes the extended Ant Colony Optimization algo-

rithm, which is used for the solution of unconstrained MINLP. Chapter 3 introduces the

Oracle Penalty Method which transforms a constrained MINLP into an unconstrained

one. Combining the algorithms from Chapter 2 and Chapter 3 enables the solution of

general MINLP given in Definition 2. The implementation (MIDACO) of this approach is

then depicted in Chapter 4. The last two chapters of this thesis present numerical results,

obtained by MIDACO, whereas Chapter 5 refers to large sets of MINLP benchmarks and

Chapter 6 illustrates explicitly space and aerospace applications. Finally some conclusions

are drawn and three appendices provide further details on the numerical results.

12

Chapter 1

Mixed Integer Nonlinear

Programming

This chapter gives an overview on algorithmic approaches available for MINLP. The el-

ementary algorithmic approaches on MINLP can be broadly classified into deterministic

and stochastic ones. While some prominent deterministic approaches are historically

grown and well established for MINLP, the field of stochastic algorithms for MINLP

is still young and developing. The most common deterministic approaches for MINLP

to find in the literature are Branch and Bound, Outer Approximation and Generalized

Benders Decomposition. Here the background and fundamental concepts of those three

approaches will be illustrated. Further available algorithms for MINLP, which are less

prominent, are also briefly discussed. Readers with a deeper interest in MINLP algorithms

are referred to Grossmann [26], who gives a very detailed introduction into deterministic

MINLP algorithms. A comprehensive overview on MINLP software in general can be

found in Bussieck and Vigerske [8].

13

1.1 Branch and Bound Method

The branch and bound (BB) method was introduced in 1960 by Land and Doig [34] for

combinatorial optimization problems. Under the assumption that the discrete decision

variables of the MINLP (Definition 2) are relaxable (this means, that the objective and

constraint functions can also be evaluated for continuous numbers, where actually a dis-

crete variable is expected), the BB method can also be applied to MINLP problems. By

recursive branching of the original optimization problem into simplified subproblems the

BB method generates a decision tree over the discrete search space of the original problem.

The BB method itself only manages the branching of this tree and additional algorithms

are required to solve the generated subproblems.

The nodes of the decision tree correspond to a continuous relaxation of the original combi-

natorial or mixed integer problem. In case of MINLP problems the relaxed NLP problem

can be written as follows:

Minimize f(x, y) (x ∈ Rncon , y ∈ Rnint : ncon, nint ∈ N0),

subject to: gi(x, y) = 0, i = 1, ...,me,

gi(x, y) > 0, i = me + 1, ...,m,

yj 6 αj, αj ∈ N, j ∈ Jlower ⊆ {1, ..., nint},

yj > βj, βj ∈ N, j ∈ Jupper ⊆ {1, ..., nint}.

(1.1)

In the relaxed NLP problem (1.1) the original discrete variables y ∈ Nnint are considered

as continuous variables y ∈ Rnint and additional constraints yj 6 αj and yj > βj

branches the discrete search space, as αj and βj are assumed to be discrete values.

14

At first the BB method considers the relaxed master NLP problem without discrete

branching constraints (Jlower = Jupper = ∅) which creates the root node of the deci-

sion tree. The optimal solution of the relaxed master NLP problem must then be equal or

better to the optimal solution of the original MINLP problem. Therefore such a solution

is considered a lower bound for the original problem. In contrast, any feasible discrete

solution to the original MINLP problem is considered as upper bound which is normally

obtained by some heuristic.

If the optimal solution for the relaxed master NLP is discrete or in case no feasible solution

could be found, the BB method stops. In the first case the optimal solution for the MINLP

is then equal to the one of the relaxed master NLP. In the second case the MINLP must

be infeasible. However, these two scenarios are normally unlikely to happen.

Assuming that the optimal solution of the relaxed master NLP is continuous the BB

method generates two (or more) subproblems of type (1.1) which include constraints

that will exclude the previously found continuous solution. Without loss of generality let

y∗j = c ∈ R be a continuous variable within the optimal solution for the relaxed master

NLP. The BB method will then branch the master problem into two subproblems, one

with the constraint yj 6 bcc and the other with the constraint yj > dce, where b·c and

d·e denote Gaussian brackets. This procedure ensures that the optimal solution for the

master problem is excluded for the subproblems and such will reveal new solutions. Based

on this new solutions found for the subproblems, the lower and upper bounds can then

be updated. In case a discrete optimal solution (in y) was found for a subproblem which

holds a better objective function value than the current upper bound, this new solution

will be updated as current best (in especially lowest) upper bound. In case the optimal

solution for the subproblem is continuous and its objective function value is higher than

the current lower bound, it can be updated as current best (in especially highest) lower

15

bound.

By further branching the subproblems in the above described manner the BB method

creates a decision tree over the discrete search space of an MINLP. Comparing the solu-

tions revealed on the subproblems with the current upper and lower bound allows then to

reject some branches of this tree from further calculation efforts. Finally the subproblem

will be so restricted regarding the set of constraints given by Jlower and Jupper that it will

reveal a discrete solution regarding the discrete variables of the original MINLP problem.

The BB method is an exact method but will fully enumerate the discrete search space of

an MINLP in the worst case. It also requires inherently that the discrete variables are

relaxable. The performance of the BB method depends heavily on the MINLP problem

structure and the algorithm used to solve the relaxed NLP problems. The BB method

can find the global optimal solution even for non-convex MINLP problems, in case the

MINLP is given in algebraic form and convex underestimators are used by the algorithm

for the subproblems (see Tawarmalani and Sahinidis [50]).

1.2 Outer Approximation

The outer approximation (OA) method was first introduced for MINLP in 1986 by Duran

and Grossmann [14]. For their approach the MINLP requires to be separable regarding

the discrete and continuous variables. All functions need to be convex and even linear for

the discrete variables. In 1994, Fletcher and Leyffer [19] were able to propose a general

OA approach, which does not require separability or linear functions, however it still

assumes convex functions. To illustrate the fundamental concept of the OA method we

consider the special case of Duran and Grossmann here.

16

The OA method considers two different subproblems to the original MINLP (Definition

2). These two subproblems are the fixed NLP and the cutting plane MILP. In contrast to

MINLP, MILP are considered more easy and can be solved for example by Branch and

Bound (see Section 1.1). The fixed NLP can be stated as follows:

Minimize f y(x) (x ∈ Rncon), (y ∈ Znint),

subject to: gyi (x) = 0, i = 1, ...,me,

gyi (x) > 0, i = me + 1, ...,m.

(1.2)

Note that in the fixed NLP (1.2) the discrete variables y ∈ Nnint are fixed parameters and

not variables to be optimized. Therefore f y(x) := f(x, y) and gyi (x) := gi(x, y) for a fixed

y ∈ Nnint . The cutting plane MILP exploits the convexity of the functions f(x, y) and

g(x, y) by replacing them with supporting hyperplanes. The cutting plane MILP can be

written as follows:

Minimize z (z ∈ R), (x ∈ Rncon , y ∈ Rnint),

subject to:



f(xl, yl) +∇ f(xl, yl)T

 x− xl

y − yl

 6 z

gi(x
l, yl) +∇ gi(x

l, yl)T

 x− xl

y − yl

 = 0, i = 1, ...,me ∈ N0

gi(x
l, yl) +∇ gi(x

l, yl)T

 x− xl

y − yl

 > 0, i = me + 1, ...,m ∈ N0



,

l = 1, ..., L.

(1.3)

17

In the cutting plane MILP (1.3) the original objective function f(x, y) is replaced by some

real variable z. As constraints, a set of L linearizations of f(x, y) and g(x, y) at points

(xl, yl), l = 1, ..., L are given. Those constraints are the supporting hyperplanes referred

to earlier.

The OA method works by solving the fixed NLP (1.2) and the cutting plane MILP (1.3)

successively in a cycle of major iterations l = 1, ..., L, which generates the set of points

(xl, yl) used for the hyperplanes in the cutting plane MILP (1.3). The OA algorithm

proposed by Duran and Grossmann [14] starts by generating an initial point (x1, y1) as

the solution of the relaxed NLP (1.1) known from the previous section. This point (l = 1)

then generates the first cutting plane MILP (1.3) which delivers a mixed integer solution

(x̃, ỹ). Using the discrete part ỹ as parameters generates the fixed NLP (1.2) problem.

The solution of this fixed NLP will reveal a new point (x2, y2) which can then be used

again to augment the set of K linearization points for the cutting plane MILP and the

circle continuous.

A special case may occur, when the discrete solution part ỹ delivered by the cutting

plane MILP does not correspond to a feasible solution in the original MINLP. Hence

the fixed NLP using ỹ as discrete parameters does not have a feasible solution. In such

case an additional feasibility problem is considered which minimizes the infeasibility of

the continuous variables corresponding to the fixed discrete parameters ỹ. The gained

solution is then used again to create the next cutting plane MILP.

The solutions obtained by the cutting plane MILP yield lower bounds to the original

MINLP problem, while the solutions obtained by the fixed NLP yield upper bounds. The

OA algorithm continuous cycling between those two subproblems, till those lower and

upper bounds are within a specified tolerance. Duran and Grossmann could show in

18

[14] that this is guaranteed to happen in a finite number of iterations under the above

assumptions for the original MINLP problem. Thus the OA method guarantees global

optimality for convex MINLP problems. For non-convex MINLP problems extension of

OA are known, whereas those do not guarantee global optimality.

1.3 Generalized Benders Decomposition

The generalized Benders decomposition (GBD) was introduced in 1972 by Geoffrion [24].

It is closely related to the outer approximation method but considers a different subprob-

lem than the cutting plane MILP (1.3). Instead of using hyperplanes as in the MILP,

the GBD assumes linear combinations making use of the Karush-Kuhn-Tucker condition.

Furthermore it disregards the continuous variables in the subproblem, making it a discrete

(or integer) linear optimization program (ILP) instead of a mixed integer linear program.

This ILP problem can be formulated as follows:

Minimize z (z ∈ R), (y ∈ Znint , x ∈ Rncon),

subject to:



f(xl, yl) +∇y f(xl, yl)T (y − yl)

+µl[g(xl, yl) +∇yg(xl, yl)T (y − yl)] 6 z, l ∈ LNLP ,

λl[g(xl, yl) +∇yg(xl, yl)T (y − yl)] 6 0, l ∈ Lfeasibility.

(1.4)

In ILP (1.4) the first set of LNLP constraints corresponds to the set of feasible NLP

subproblems (1.2) known from the OA method. The second set of Lfeasibility constraints

corresponds to a set of feasibility subproblems, which may occur when for a discrete

19

solution given by the ILP no feasible NLP solution exists. The feasibility subproblem

aims on minimizing the NLP constraint violation and can be formulated as follows:

Minimize z (z ∈ R+
0 , x ∈ Rncon),

subject to: gyi (x) > − z, i = 1, ...,m.

(1.5)

Like the OA method the GBD method solves the ILP (1.4) and the NLP subproblem

(either (1.2) or (1.5)) successively in a circle. In contrast to the OA method the GBD

method adds only one constraint at a time to the ILP problem, which results in a slower

narrowing of the feasible search space. As a consequence the lower bound given by the

ILP in the GBD method is weaker (greater or equal) to the one given by the MILP in

the OA method, which may result in more major iterations of the GBD method. On

the other hand the ILP problem is easier to solve than the MILP problem, because it

considers only discrete variables and takes less constraints into account.

1.4 Other approaches on MINLP

Besides the above described algorithms, there exist several other, less prominent, ap-

proaches for MINLP. Those approaches are briefly described here regarding their back-

ground, algorithmic key elements and analytic properties together with relevant references.

1.4.1 Extended Cutting Plane Method

The extended cutting plane (ECP) method for MINLP was introduced by Westerlund and

Petterson [52]. In contrast to the BB, OA and GBD method, it does not consider NLP

20

subproblems but only MILP subproblems. The ECP method iteratively solves a cutting

plane MILP similar to (1.3) known from Section 1.2. Along those iterations the ECP

method successively adds a linearization of the currently most violated constraint as new

constraint to the MILP. This way the maximal constraint violation gets minimized and

the ECP method terminates when the maximal violation lies within a specified tolerance.

The ECP method is intended for convex MINLP problems only and is most suitable for

problems with only a moderate degree of nonlinearity. For problems with a high degree

of nonlinearity the ECP may require significant more iterations than other approaches.

1.4.2 SQP-based Method

An MINLP algorithm based on sequential quadratic programming (SQP) was proposed

2007 by Exler and Schittkowski [18]. This approach extends the concept of a trust re-

gion SQP by considering a sequence of mixed integer quadratic subproblems, instead of

continuous ones. A benefit of this approach is that the discrete variables of the original

MINLP problem do not need to be relaxed, as the subproblems are considered to be mixed

integer. The method does not require convex functions. The method can be stabilized,

if combined with BB (Section 1.1) or OA (Section 1.2). In those combined cases, the

method holds a convergence proof for convex MINLP problems.

1.4.3 Mesh Adaptive Direct Search Method

A mesh adaptive direct search (MADS) algorithm for general MINLP problems was intro-

duced by Abramson et al. [3]. Starting from a set of trial points (e.g. randomly selected

starting points) the MADS algorithm applies a specified mesh on the search domain us-

ing a neighborhood function that defines the local mesh point neighbors. The MADS

21

algorithm then iteratively searches the mesh grid points, trying to find an improved mesh

point to update its parameters. In the worst case this results in an exhaustive search

of all grid points. An advantage of the MADS algorithm is that it does not require the

relaxation of discrete variables. On the other hand, the user is forced to define a proper

neighborhood for all discrete variables, which requires some insight in the MINLP prob-

lem. Under some smoothness assumptions for the objective and constraint functions the

MADS algorithm guarantees local optimality, but not global optimality.

1.4.4 Stochastic Metaheuristics and Hybrid Algorithms

Several attempts to apply stochastic metaheuristics on MINLP have been proposed in the

literature during the last decades, for example Genetic Algorithms [9] and [36] or Particle

Swarm Optimization [54]. Those attempts normally extend an existing metaheuristic for

purely continuous or purely combinatorial optimization problems by including one or more

additional heuristics, to enable it to search the mixed integer search domain. Constraints

are mostly handled via a penalty function approach (see Chapter 3) in metaheuristics.

The most significant advantage of stochastic metaheuristics is their robustness regarding

critical function properties (like non-convexity or discontinuities). In case of MINLP

those methods hold another advantage, as they do not require the relaxation of discrete

variables. On the contrary, metaheuristics do require a high amount of function evaluation

due to their stochastic nature. The theoretical analysis of metaheuristics is still a young

field, whereas convergence proofs are sporadically available for specific cases (e.g. proofs

for evolutionary algorithms can be found in Rudolph [38]). In the case of MINLP to the

knowledge of the author, no formal convergence proof for any stochastic metaheuristic is

available in the literature yet.

22

Stochastic metaheuristics are often combined with a deterministic or local search algo-

rithm in order to improve their local convergence behavior. Those combined algorithms

are referred to as hybrid algorithm. Normally, hybrid algorithms start their optimization

process by employing the general metaheuristic till some sufficient attractive solution is

found. Then the hybrid algorithms starts their local search algorithm, using the previously

gained sufficient attractive solution as starting point. Examples for hybrid algorithms for

MINLP in the literature are OQNLP [51] and ACOmi [43]. The theoretical analysis

of convergence properties of hybrid algorithms is very difficult, as those depend on the

individual properties of the hybridized algorithms.

23

Chapter 2

Ant Colony Optimization

In this chapter the stochastic metaheuristic called Ant Colony Optimization (ACO) is

described. This method is a nature inspired optimization algorithm which belongs to the

class of evolutionary algorithms, where a population of agents share some information in

order to achieve some goal. To find food, biological ants start to explore the area around

their nest randomly at first. If an ant succeeds in finding a food source, it will return back

to the nest, laying down a chemical pheromone trail marking its path. This pheromone

trail will attract other ants to follow it in the hope of finding food again.

The basic idea of ACO algorithms is to mimic this biological behavior with artificial ants,

that randomly search at first and then uses some pheromone like parameter to explore

the search domain defined by an optimization problem. The ACO algorithm was first

introduced in 1992 by Dorigo [12] and has attracted many attention since. While it was

originally introduced for combinatorial optimization problems only, the methodology was

later extended to continuous search domains, too [48]. Here a new extension to mixed

integer search domains is illustrated, which was recently developed by the author in [43]

24

and [44]. The aim of this chapter is to give a description of the ACO algorithm applied

to MINLP. A general and comprehensive introduction to ACO can be found in [13] for

example.

Note that in Section 2.4 an illustrative numeric example on how ACO actually works on

a simple MINLP problem can be found.

2.1 ACO for MINLP General Definitions

In order to define the ant colony algorithm for mixed integer search domains, some general

definitions are required. Here those fundamental definitions are established and then used

in Section 2.2 to explicitly define an ACO algorithm for MINLP. Stochastic samples are

essential for the ACO algorithm, whereas those samples correspond to a given probability

density function. As the case of mixed integer search domains is considered here, the

definitions of two types of probability density functions are recalled; one refers to the

continuous and one to the discrete domain.

Definition 2.1 [Probability Density Function (PDF)] A function P : R→ R+
0 with

∫ ∞
−∞
P(t) dt = 1

is called a continuous Probability Density Function (cPDF). A function Q : Z→ R+
0 with

∞∑
d=−∞

Q(d) = 1

is called a discrete Probability Density Function (dPDF).

25

As any evolutionary algorithm, the ACO metaheuristic uses individual agents (called

ants) that explore the search domain corresponding to an optimization problem. These

individuals belong to different generations, which express the major iterations of the

algorithm. The evolutionary aspect of the algorithm is the application of its principle

law: survival of the fittest. The fitness of the individuals corresponds here directly to

the objective function value or a penalty function. A penalty function transforms a

constrained optimization problem into an unconstrained one, which is normally achieved

by adding a term to the objective function that penalizes the constraint violations. Here

a very broad definition of penalty function is assumed.

Definition 2.2 [Penalty function]

Let (x∗, y∗) ∈ K so that f(x∗, y∗) 6 f(x, y) ∀(x, y) ∈ K. A function p : Rncon × Znint →

R with p(x∗, y∗) 6 f(x, y) ∀(x, y) ∈ K is called penalty function. (See Chapter 3 for

examples of specific penalty functions)

After every generation, the fittest individuals are selected and saved in some solution

archive to stochastically generate the next generation of individuals. This way the algo-

rithm aims on improving the fitness of individuals by any new generation. Next the terms

individual (or ant), generation and fitness are defined for the mixed integer case.

Definition 2.3 [Individual, Generation, Fitness]

An element (x, y) ∈ Rncon×Znint is called individual. An individual (x, y) is called feasible,

if (x, y) ∈ K (see Definition 1). If (x, y) /∈ K, the individual is called infeasible. A set

G := {(x, y)1, (x, y)2, ..., (x, y)v} is called a generation of size v ∈ N, if all components

xl=1,...,v
i=1,...,ncon

are samples of a set of ncon cPDF’s P i=1,...,ncon and all components yl=1,...,v
j=1,...,nint

are samples of a set of nint dPDF’s Qj=1,...,nint (Note that the individuals (x, y) are not

necessarily feasible). A function f̃ : Rncon × Znint → R is called fitness of the individual

(x, y), if f̃(x, y) = −f(x, y) for a MINLP (Defintion 2) with K = Rncon × Znint and

26

f̃(x, y) = p(x, y) for a MINLP (Defintion 2) with K 6= Rncon × Znint, where p(x, y) is a

penalty function (see Definition 2.2).

Next the above mentioned solution archive, which contains the fittest individuals over all

generations, is defined. Further a general evolutionary operator is defined here. This oper-

ator is responsible for the creation of a generation of individuals based on the information,

that is provided by the solution archive.

Definition 2.4 [Solution Archive, Evolutionary Operator]

A set S := {(x, y)1, (x, y)2, ..., (x, y)K} is called solution archive of size K, if all individuals

of S are ordered regarding their fitness, this is f̃(x, y)p > f̃(x, y)q ∀ p, q ∈ N : p < q 6 K.

A function E : (Rncon×Znint)K → (Rncon×Znint)v that creates a generation of v individuals

based on K individuals of a solution archive S is called an evolutionary operator.

Note that in Definition 2.4 the size K of the solution archive and the size v of the generated

individuals are independent parameters. However, normally it is assumed that K < v.

2.2 An Explicit ACO Operator for MINLP

An explicit evolutionary operator (see Definition 2.4) for ant colony optimization applied

to mixed integer search domains is given here. The operator, named EACO, is based on

a set of n = ncon + nint multi-kernel Gauss probability density functions Gh=1,...,n. Such

a multi-kernel PDF Gh (2.5) represents a weighted sum over K individual Gauss PDF’s

(2.6). The weights used within Gh are given by the parameter ωhk=1,...,K ∈ R. The means

for the individual Gauss PDF’s within Gh are given by parameter µhk=1,...,K ∈ R and the

standard deviations according to every dimension h = 1, ..., n are given by the parameter

27

σh ∈ R. Then the parameter triplet {ωhk , µhk, σh} does determine the multi-kernel PDF

Gh and therefore the algorithmic search process based on the stochastic samples given by

Gh. As those parameters therefore guide the algorithmic search process, this triplet is

called pheromone in analogy to biological ants. The multi-kernel Gauss PDF Gh is given

in Equation 2.5.

Gh(t, ω, µ, σ) =
K∑
k=1

ωhk
1

σh
√

2π
e
− (t−µhk)2

2 σh 2 (h = 1, ..., ncon + nint). (2.5)

Note that the term:

1

σh
√

2π
e
− (t−µhk)2

2 σh 2 , (2.6)

within Gh (2.5) refers to an individual Gauss PDF. Figure 2.1 illustrates an example of

a multi kernel Gauss PDF (dotted line) that is based on three individual Gauss PDF’s

(solid line).

28

Figure 2.1: Three individual Gauss PDF’s and their multi-kernel PDF

In the integer domain, a discretized version of the multi-kernel Gauss probability density

function Gh(t, ω, µ, σ) is applied. Such discretized version accumulates the probability

given by Gh(t, ω, µ, σ) around an integer d in the interval [d− 1
2
, d+ 1

2
]. The cPDF’s and

dPDF’s described in Section 2.1 are then given by:

P i(t) = Gi(t, ω, µ, σ) (i = 1, ..., ncon),

Qj(d) =

∫ d+ 1
2

d− 1
2

Gncon+j(t, ω, µ, σ) dt (j = 1, ..., nint).
(2.7)

Figure 2.2 illustrates the discretized version of the multi-kernel PDF shown in Figure 2.1.

29

Figure 2.2: Discretized version of the multi-kernel PDF shown in Figure 2.1

The individual cPDF’s P i(t) and dPDF’s Qj(d) are determined by the following triplet

of parameters: {ωhk , µhk, σh}. As this triplet is therefore responsible for the direction of

the search process of the ACO algorithm, which is performed by random samples based

on P i(t) and Qj(d), it is referred to as pheromones in analogy to biological ants. The

ωhk depend only on the size K of the solution archive S and act as weight within every

multi-kernel Gauss PDF Gh(t, ω, µ, σ). Those weights are calculated by:

ωhk =
K − k + 1∑K

k=1 k
, (2.8)

giving the first kernel the highest probability and the last kernel the lowest probability to

be selected. Note that the sum over all weights ωh1 , ..., ω
h
K is assumed to be equal to one,

this is
∑K

k=1 ω
h
k = 1

30

The µhk represent the means of the individual Gauss PDF’s within the multi-kernel PDF

Gh(t, ω, µ, σ). They are easily calculated by the ants (x, y)k=1,...,K stored in the solution

archive S in respect to their dimension h as:

µhk =


xkh if h = 1, ..., ncon,

ykh−ncon if h = ncon + 1, ..., ncon + nint.

(2.9)

The σh express the standard deviations of the individual Gauss PDF’s within the multi-

kernel PDF Gh(t, ω, µ, σ). Those are calculated based on the minimal distance Dmin and

maximal distance Dmax between the individual dimensions h of the ants (x, y)k=1,...,K

stored in the solution archive S. Those minimal and maximal distances are calculated by:

Dh
min =


min{|xph − x

q
h| : p, q ∈ N, p 6= q 6 K} if h = 1, ..., ncon,

min{|yph−ncon − y
q
h−ncon | : p, q ∈ N, p 6= q 6 K} if h = ncon + 1, ..., ncon + nint.

(2.10)

The maximal distance Dh
max is calculated analog as:

Dh
max =


max{|xph − x

q
h| : p, q ∈ N, p 6= q 6 K} if h = 1, ..., ncon,

max{|yph−ncon − y
q
h−ncon| : p, q ∈ N, p 6= q 6 K} if h = ncon + 1, ..., ncon + nint.

(2.11)

Besides the minimal and maximal distances, the standard deviations σh take further into

account the algorithmic process, indicated by the number of generations #G produced

31

so far. The standard deviations σh are then calculated by:

σh =


Dhmax−Dhmin

#G
if h = 1, ..., ncon,

max
{
Dhmax−Dhmin

#G
, 1

#G
, (1− 1√

nint
)/2
}

if h = ncon + 1, ..., ncon + nint.

(2.12)

Note that for dimension h that correspond to the discrete search space, the standard

deviation σh will never be smaller than max{ 1
#G

, (1− 1√
nint

)/2} in case thatDh
max−Dh

min =

0 (which expresses the scenario, that all discrete variables corresponding to dimension h

saved in the solution archive S have converged to the same integer). This is done to ensure

that for discrete variables the multi-kernel PDF still samples with a sufficient standard

deviation, which allows to still reach nearby integers.

Based on the above described multi-kernel PDF Gh(t, ω, µ, σ) (2.5) the evolutionary ACO

operator EACO for MINLP can then explicitly be given by Definition 2.13.

Definition 2.13 [ACO operator for MINLP]

A function EACO : (Rncon × Znint)K → (Rncon × Znint)v that creates a generation G :=

{(x̃, ỹ)1, (x̃, ỹ)2, ..., (x̃, ỹ)v} of v ants, based on a set of K ants from a solution archive

S := {(x, y)1, (x, y)2, ..., (x, y)K} is called ACO operator for MINLP, if x̃l=1,...,v
i=1,...,ncon

are

stochastic samples of P i(t) and ỹl=1,...,v
j=1,...,nint

are stochastic samples of Qi(d).

Note that equation (2.5) describes only the multi-kernel Gauss PDF Gh(t, ω, µ, σ), that is

characterized by the pheromone triplet {ωhk , µhk, σh} and to which the stochastic samples

generated by the ACO algorithm correspond. However, for the numerical execution of

the algorithm an additional technique is required, which actually produces stochastic

samples regarding to the probability distribution given by Gh(t, ω, µ, σ). This may be

32

for example the Box-Muller method which is given in Lemma 2.14. The Box-Muller

method generates a Gaussian distributed stochastic sample based on two independent

and uniformly distributed random numbers.

Lemma 2.14 [Box-Muller Method [7]]

Let {u1, u2} ⊆ R be independent random variables uniformly distributed in the left-open

interval (0, 1]. Let ϑ̃ ∈ R be given by ϑ̃ := ν+σ
√
−2ln(u1) cos(2πu2), where ν ∈ R+

0 and

σ ∈ R. Then ϑ̃ is a random variable corresponding to a normal distribution with standard

deviation σ and mean ν.

A proof of Lemma 2.14 can be found in [7]. Uniformly distributed random numbers, which

are required by the Box-Muller method, can be obtained by a pseudo random number

generator, like for example the Xorshift [35] algorithm.

2.3 ACO for MINLP Pseudo Code

In order to illustrate the ACO for MINLP algorithm in a more compact way, a pseudo

code implementation is given in Algorithm 1. The algorithm follows strictly the definitions

given in Section 2.1 and Section 2.2. Note that the initial generation G1 of ants is sampled

due to a uniform PDF, while for any later generation Gi=2,3,4,... the ants are samples of

the evolutionary operator EACO (2.13), which is the essential part of the algorithm.

33

Algorithm 1 ACO for MINLP

while stopping criteria not met do

(0) Set l = 1 and initialize a first generation G1 (Definition 2.3) of v individuals

(x, y)1, (x, y)2, ..., (x, y)v based on a uniform cPDF P (Definition 2.1) for the contin-

uous variables x and a uniform dPDF Q (Definition 2.1) for the discrete variables

y.

(1) Select K best individuals from generation Gl based on their fitness value f̃(x, y)

(Definition 2.3) and save them as solution archive S (Definition 2.4).

(2) Apply evolutionary operator EACO (Definition 2.13) on the solution archive S

to create the next generation Gl+1 of v individuals (x, y)1, (x, y)2, ..., (x, y)v.

(3) Introduce all individuals (x̃, ỹ) of generation Gl+1 to the solution archive S if

they have a better fitness than the lowest ranked individual in S; this is if f̃(x̃, ỹ) >

f̃(x, y)K. Discard those individuals from the archive, that have a worse fitness than

the K-th individual in the archive.

(4) Set l = l + 1 and go to (2).

end while

In Algorithm 1 the stopping criteria is not explicitly given, because this is an algorithmic

choice independent of the ACO framework. Among evolutionary algorithms the two most

common stopping criteria are a maximum budget of function evaluation (e.g. 1 Million

function evaluation) or a maximum cpu-time budget (e.g. 1 Hour). A more sophisticated

stopping criteria is the optimization progress between generations. E.g. if among a

34

number of generations the objective or penalty function could not be further improved.

2.4 A Illustrative Example of ACO for MINLP

An illustrative example calculation of the ACO for MINLP algorithm described in Section

2.3 is given here. This is done in order to give the reader a fast impression on how

the ACO algorithm actually works on a concrete MINLP optimization problem. For

simplicity reasons, a very simple MINLP is considered here. Besides the objective function

it only assumes simple box constraints on the decision variables as lower and upper bound.

Equation 2.15 states the mathematical formulation of the assumed example problem,

where one continuous variable x1 and one discrete variable y1 must be optimized. Both

variables must be in the range of zero to ten, where the optimal solution is zero for both

variables.

Minimize f(x, y) = x1 + y1,

subject to: 0 6 x1 6 10, with x1 ∈ R,

0 6 y1 6 10, with y1 ∈ Z.

(2.15)

In Subsection 2.4.1 several ACO generations are numerically demonstrated, illustrating

the algorithmic procedure to solve the above example problem. As the ACO algorithm

requires many function evaluation based on its stochastic nature, here only the first three

and the 10-th generation G are demonstrated. Additionally, very small ACO parameters

v and K are assumed, in order to enable a better overview. Here v = 5 and K = 3 is

assumed, which implies that in every generation G five individuals (also called Ants) are

generated and the solution archive S contains the three best individuals found so far in

the overall search process. In Subsection 2.4.1 the v individual ants of a generation G,

35

the solution archive S and the pheromone triplet {ω, µ, σ} are numerically displayed. As

explained in the ACO pseudo code in Section 2.3, the fitness value f̃(x, y) is considered

rather than the objective function f(x, y) in the solution archive. This is an important

point for constrained MINLP, where the calculation of the fitness value is non-trivial (see

Chapter 3). In this example, which only considers simple box-constraints, the fitness value

is calculated as the negative of the objective function value, this is f̃(x, y) = −f(x, y).

Note that if a random number is sampled, which exceeds these box-constraint, the random

number is refused and a new random number is sampled, as long as it is within the lower

and upper bounds.

In Subsection 2.4.2 a graphical illustration of all multi-kernel Gauss PDF’s G1,2(t, ω, µ, σ)

appearing in Subsection 2.4.1 is given.

2.4.1 Numerical Example Calculation

Based on uniformly distributed random samples, the very first generation G1 of v = 5

individuals is created and the K = 3 best are stored in the solution archive S. Based on

the entries in S the pheromone triplet {ω, µ, σ} (see Section 2.2) is then calculated.

Generation G1 of v ants

Ant1 = (3.4, 7) → f(x, y) = 10.4

Ant2 = (6.7, 9) → f(x, y) = 15.7

Ant3 = (1.2, 3) → f(x, y) = 4.2

Ant4 = (8.3, 1) → f(x, y) = 9.3

Ant5 = (9.5, 4) → f(x, y) = 13.5

Solution archive S of K ants

Place 1: (1.2, 3), f̃(x, y) = −4.2

Place 2: (8.3, 1), f̃(x, y) = −9.3

Place 3: (3.4, 7), f̃(x, y) = −10.4

36

Pheromone triplet {ω, µ, σ} for Gauss PDF G1,2(t, ω, µ, σ) based on S

ω1
1 = 3

6
, ω1

2 = 2
6

, ω1
3 = 1

6
, ω2

1 = 3
6

, ω2
2 = 2

6
, ω2

3 = 1
6

µ1
1 = 1.2 , µ1

2 = 8.3 , µ1
3 = 3.4 , µ2

1 = 3 , µ2
2 = 1 , µ2

3 = 7

σ1 = |8.3−1.2|−|3.4−1.2|
1

= 7.1−2.2
1

= 4.9

σ2 = max{ |7−1|−|3−1|
1

, 1−1, 0} = 6−2
1

= 4

The first generation G1 of ants was sampled by a uniform distribution over the full search

space from zero to ten. But from the second generation G2 on, the ants of each generation

are generated based on the evolutionary operator EACO (Definition 2.13). This operator

applies the multi-kernel Gauss PDF’s G1,2 for dimension x1 and y1 respectively, whereas its

concrete stochastic samples depend on the pheromone triplet {ω, µ, σ}. Below the second

generation G2 of ants is displayed. In brackets information on the concrete mean µ is

given, that was used by G1,2 to generate x1 and y1 respectively. Note that the individuals

of G2 are stochastic samples and thus do not exactly reproduce the mean values. For

example x1 of Ant1 is 1.9, which is a stochastic sample of G1 based on the first kernel (that

has probability ω1
1 = 3

6
to be selected) using mean µ1

1 = 1.2 with a standard deviation of

σ1 = 4.9. In case of the integer variable y1 the stochastic samples, which are continuous

are discretized (by rounding them to the nearest integer). For example y1 of Ant4 is given

as 1, which is the rounded stochastic sample (for example [1.3]) of G2 based on the second

kernel (that has probability ω2
2 = 2

6
to be selected) using mean µ2

2 = 1 with a standard

deviation of σ1 = 4. Note that the previous best solution (with fitness f̃(x, y) = −4.2)

still remains in the solution archive S, as only one better individual were created within

generation G2.

37

Generation G2 (based on EACO)

Ant1 = (1.9, 3) → f(x, y) = 4.9 (based on means: µ1
1, µ2

1)

Ant2 = (2.6, 2) → f(x, y) = 4.6 (based on means: µ1
1, µ2

3)

Ant3 = (7.5, 4) → f(x, y) = 11.5 (based on means: µ1
2, µ2

1)

Ant4 = (0.8, 1) → f(x, y) = 1.8 (based on means: µ1
1, µ2

2)

Ant5 = (4.3, 5) → f(x, y) = 9.3 (based on means: µ1
3, µ2

1)

Solution archive S
Place 1: (0.8, 1), f̃(x, y) = −1.8

Place 2: (1.2, 3), f̃(x, y) = −4.2

Place 3: (2.6, 2), f̃(x, y) = −4.6

Pheromone triplet {ω, µ, σ} for Gauss PDF G1,2(t, ω, µ, σ) based on S

ω1
1 = 3

6
, ω1

2 = 2
6

, ω1
3 = 1

6
, ω2

1 = 3
6

, ω2
2 = 2

6
, ω2

3 = 1
6

µ1
1 = 0.8 , µ1

2 = 1.2 , µ1
3 = 2.6 , µ2

1 = 1 , µ2
2 = 3 , µ2

3 = 2

σ1 = |2.6−0.8|−|1.2−0.8|
2

= 1.8−0.3
2

= 0.75

σ2 = max{ |3−1|−|2−1|
2

, 2−1, 0} = 2−1
2

= 0.5

The third generation G3 of ants is created analogously to the second generation G2. As

the pheromone triplet of G2 is shown above, again information on the based means can

be found in brackets corresponding to each ant. Note that the previous best solution

(with fitness f̃(x, y) = −1.8) still remains in the solution archive S, as only two better

individuals were created within generation G3.

38

Generation G3 (based on EACO)

Ant1 = (1.9, 1) → f(x, y) = 2.9 (based on means: µ1
2, µ2

1)

Ant2 = (0.8, 4) → f(x, y) = 4.8 (based on means: µ1
1, µ2

2)

Ant3 = (1.2, 1) → f(x, y) = 1.3 (based on means: µ1
1, µ2

1)

Ant4 = (2.9, 3) → f(x, y) = 5.9 (based on means: µ1
3, µ2

2)

Ant5 = (0.6, 0) → f(x, y) = 0.6 (based on means: µ1
1, µ2

1)

Solution archive S
Place 1: (0.6, 0), f̃(x, y) = −0.6

Place 2: (1.2, 1), f̃(x, y) = −1.3

Place 3: (0.8, 1), f̃(x, y) = −1.8

Pheromone triplet {ω, µ, σ} for Gauss PDF G1,2(t, ω, µ, σ) based on S

ω1
1 = 3

6
, ω1

2 = 2
6

, ω1
3 = 1

6
, ω2

1 = 3
6

, ω2
2 = 2

6
, ω2

3 = 1
6

µ1
1 = 0.6 , µ1

2 = 1.2 , µ1
3 = 0.8 , µ2

1 = 0 , µ2
2 = 1 , µ2

3 = 1

σ1 = |1.2−0.6|−|0.8−0.6|
3

= 0.6−0.2
3

= 0.133

σ2 = max{ |1−0|−|1−1|
3

, 3−1, 0} = 1−0
3

= 0.3

The following generations are created completely analogously to the above scheme. Hence

only one more generation is displayed here in order to illustrate, how a more advanced

generation may look like. Now the tenth generation G10 is considered, were the individuals

are already close to the solution of zero. Because the pheromone triplet {ω, µ, σ} of the

previous generation G9 is not shown here, no information on the means is attached to the

ants.

39

Generation G10 (based on EACO)

Ant1 = (0.021, 0) → f(x, y) = 0.021

Ant2 = (0.003, 0) → f(x, y) = 0.003

Ant3 = (0.017, 0) → f(x, y) = 0.017

Ant4 = (0.009, 1) → f(x, y) = 1.009

Ant5 = (0.001, 0) → f(x, y) = 0.001

Solution archive S
Place 1: (0.001, 0), f̃(x, y) = −0.001

Place 2: (0.003, 0), f̃(x, y) = −0.003

Place 3: (0.017, 0), f̃(x, y) = −0.017

Pheromone triplet {ω, µ, σ} for Gauss PDF G1,2(t, ω, µ, σ) based on S

ω1
1 = 3

6
, ω1

2 = 2
6

, ω1
3 = 1

6
, ω2

1 = 3
6

, ω2
2 = 2

6
, ω2

3 = 1
6

µ1
1 = 0.001 , µ1

2 = 0.003 , µ1
3 = 0.017 , µ2

1 = 0 , µ2
2 = 0 , µ2

3 = 0

σ1 = |0.017−0.001|−|0.003−0.001|
10

= 0.016−0.002
10

= 0.0014

σ2 = max{ |0−0|−|0−0|
10

, 10−1, 0} = 10−1 = 0.1

In the pheromone triplet {ω, µ, σ} of the tenth generation G10 a significant difference

between the standard deviation σ1 = 0.0014 for continuous variables and σ2 = 0.1 for

integer variables can be observed. This is due to the separate handling of standard

deviations for continuous and integer variables described in Equation 2.12. The fixed

lower bound for integer deviations is zero for this example MINLP, because nint = 1 and

therefore (1 − 1√
nint

)/2 = 0. However the dynamic bound 1
#G

is still active in the tenth

Generation G10 were all integer solutions have already converged to zero. This moderate

bound for the deviation σ2 enables the algorithm to still have a probability to further

explore the integer search space, even though all integer solutions have converged.

40

2.4.2 Graphical Illustration of Multi-Kernel Gauss PDF’s

Here a graphical illustration of the multi-kernel Gauss PDFs’s G1,2(t, ω, µ, σ) appearing

in Subsection 2.4.1 is given. Figure 2.3 displays the multi-kernel PDF G1 and G2 cor-

responding to the continuous domain (x1) and the discrete domain (y1) respectively for

the 1st, 2nd, 3rd and 10th generation. Note that the multi-kernel PDF’s displayed refer

to the pheromone triplet {ω, µ, σ} based on the solution archive S that is calculated by

the ants of the corresponding generation number. In Figure 2.3 the convergence of the

probability density towards the solution (x∗1, y
∗
1) = (0, 0) can be well observed.

41

Figure 2.3: Multi-Kernel PDF’s G1 (for x1) and G2 (for y1) from Subsection 2.4.1

42

Chapter 3

The Oracle Penalty Method

Penalty methods are a well known technique to handle constrained optimization problems.

Those methods transform a constrained problem into an unconstrained one by adding a

penalty term to the original objective function. In particular, this approach to handle

constraints is the most popular one among stochastic metaheuristics (see [10]). The big

advantage of penalty methods is their simplicity and straight forward implementation.

On the other side, simple penalty methods often perform very poorly on challenging

constrained optimization problems, while more sophisticated ones normally require an

additional tuning of many parameters to gain a sufficient performance. The burden of a

good parameter selection for advanced penalty functions in metaheuristics is a well known

problem (see [10] or [53]).

In this chapter a conceptual new penalty method, named Oracle Penalty Method, is pre-

sented, which has been recently developed by the author in [45]. The here proposed

method is universal as it is applicable to any kind of optimization algorithm, but it is

especially intended to be employed in stochastic metaheuristics. Moreover, the oracle

43

penalty method aims at finding global optimal solutions, whereas several optimization

runs might be required to adjust the one parameter required by the method. As stochas-

tic metaheuristics normally also aim at finding global or nearly global solutions and often

require several optimization runs due to their stochastic nature, the method seems very

suitable for such kind of algorithms.

The name of the method is deduced from the predictive nature of its parameter, named

oracle. This parameter directly corresponds to the global optimal (feasible) objective

function value of a given problem and selecting an oracle parameter a priori can therefore

be seen as some kind of forecast (like an oracle in the Greek methodology). Although

there is no other parameter involved in the method than the oracle, it is still considered

an advanced approach, absolutely competitive with other penalty functions commonly

used in stochastic metaheuristics (see numerical results in Section 5.1).

The chapter is structured as follows: Firstly, three common examples of penalty methods

taken from the literature are analyzed and illustrated for the MINLP case. Secondly,

the key idea of the oracle method is developed introducing a basic version of the oracle

penalty method. Since the basic version lacks of robustness regarding the parameter

selection, three extensions for the basic version are carried out and explained in detail.

These modifications finally lead to the extended oracle penalty function. An example of

a pseudo-code implementation of the extended version together with a parameter update

rule completes the discussion on the oracle penalty method.

A numerical evaluation and comparison of the oracle penalty method versus commonly

used penalty methods can be found in Section 5.1. This evaluation demonstrates, that

the oracle penalty method is not only competitive with commonly used approaches, but

can even outperform those.

44

3.1 Examples of Common Penalty Methods

Three common penalty methods (see [10]) are presented for the MINLP case and briefly

analyzed. The formulations presented here follow the concept of a residual function

res(x, y) used to measure the feasibility of an iterate (x, y) to the MINLP (Definition

2). A residual function measures the constraint violations by applying a norm function

over all m constraint violations of a MINLP problem (Definition 2). This approach is

commonly used and some explicit residual functions based on the l1, l2 and l∞ norm are

listed in Table 3.1. Note that any feasible iterate (x, y) will correspond to a residual

function value of zero.

Table 3.1: Examples of residual functions
Norm residual function res(x, y) for an iterate (x, y)

l1 res(x, y) =
∑me

i=1 |gi(x, y)| −
∑m

i=me+1 min{0, gi(x, y)}

l2 res(x, y) =
√∑me

i=1 |gi(x, y)|2 +
∑m

i=me+1 min{0, gi(x, y)}2

l∞ res(x, y) = max{ |gi(x, y)|i=1,...,me , |min{0, gi(x, y)}i=me+1,...,m|}

Table 3.2 lists formulations of the death , static and adaptive penalty function p(x, y)

for an iterate (x, y) to an MINLP problem (Defintion 2) using a residual function res(x, y).

The last column of Table 3.2 contains the specific parameters, required by the correspond-

ing penalty function.

45

Table 3.2: Examples of common penalty functions
Name Penalty function p(x, y) for an iterate (x, y) Parameters

death p(x, y) =

{
f(x, y) , if res(x, y) = 0

∞ , if res(x, y) > 0
none

static p(x, y) = f(x, y) +W · res(x, y) W

adaptive p(x, y) = f(x, y) + λ(t) · res(x, y) λ(t), β1, β2, I

λ(t+ 1) =


(1/β1) · λ(t) , if case#1

β2 · λ(t) , if case#2

λ(t) , otherwise

β1 > 1, β2 > 1

case#1: The best individuals during the last

I generations have been always feasible.

case#2: The best individuals during the last

I generations have never been feasible.

The death penalty function is clearly the simplest penalty function possible and it actu-

ally presents an indicator function. Any infeasible iterate will be penalized with infinity,

while any feasible iterate is penalized with its objective function value. The main ad-

vantage of this method is the lack of any parameter, the main drawback is the inability

to explore any infeasible region of the search space. Obviously this method can not be

suitable for any challenging constrained optimization problem, where feasible iterates are

difficult to find. Further information on this method can be found for example in Coit

and Smith [11].

The static penalty function is a sum of the objective function and the residual function

46

multiplied by the parameter W . This parameter is assumed to be quite large (e.g. W =

109) and enables the method to explore infeasible search regions. Even though this method

seems to be already much more advanced than the death penalty function, it already comes

with the drawback of one parameter to be selected. Further information on this method

can be found for example in Homaifar et al. [30]. Note that the static penalty function

can further be advanced, if the parameter W is changed/adapted after every generation

(e.g. starting with a small value for W and increasing it over time). Here however the

parameter W is considered to be constant and the adaptive penalty function (see below)

is instead considered as a representant of such an adaptive method.

The adaptive penalty function is the sum of the objective function and the residual func-

tion multiplied by a dynamic factor λ(t), which is updated for every generation t. Based

on the progress of the algorithm in either finding feasible iterates (case#2) or improve

feasible iterates (case#1), this factor increases or decreases the weight on the residual

function in the penalty function. As this penalty function is able to dynamically adapt

itself on the current progress of the algorithm, this approach seems suitable for challeng-

ing constrained problems. Nevertheless, requiring four parameters to be set in advance,

this penalty function claims a lot of optimization effort itself. Further information on this

method can be found for example in Hadj-Alouane and Bean [27].

Note that the here presented penalty functions represent only the most commonly used

ones within stochastic metaheuristics (see Coello Coello [10]), but other and more so-

phisticated approaches are known for constraint handling in optimization. Among those

are for example the Filter Method (see Fletcher and Leyffer [20]) and the Augmented

Lagrangian Method (see Hestenes [29]).

47

3.2 Development of the Oracle Penalty Method

In this section the oracle penalty method is described in detail. At first a basic version

of the method is explained and modifications are developed which lead to an extended

version. This extended version is robust enough to be applied on any general constrained

optimization problem. An example of an implementation together with an update rule

for the oracle parameter complete this section.

3.2.1 Basic Oracle Penalty Function

The key idea of the oracle penalty method is a transformation of the objective function

f(x, y) of the MINLP (Defintion 2) into an additional equality constraint g0(x, y) =

f(x, y)−Ω = 0, where Ω is a parameter, named oracle. An objective function is redundant

in the transformed problem and is declared as a constant zero function f(x, y). The

transformed problem is then of the form:

Minimize f(x, y) ≡ 0,

subject to: g0(x, y) = f(x, y)− Ω = 0, Ω ∈ R,

gi(x, y) = 0, i = 1, ...,me ∈ N,

gi(x, y) > 0, i = me + 1, ...,m ∈ N.

(3.1)

Now let (x∗, y∗) denote the global optimal solution of the MINLP (Defintion 2). Then an

oracle parameter Ω = f(x∗, y∗) would directly imply, that a feasible solution of problem

(3.1) is the global optimal solution of the MINLP (Defintion 2).

48

Assuming that for a given optimization problem the optimal objective function value

f(x∗, y∗) is known, the problem (3.1) holds a significant advantage compared to MINLP

in Definition 2. By transforming the objective function into an equality constraint, the

current progress of the algorithm in minimizing the new constraint g0(x, y) and minimizing

the residual of the original constraints g1(x, y), ..., gm(x, y) becomes directly comparable.

This comparability can be exploited by a penalty function, which balances its penalty

weight on either the transformed objective function or the original constraints. The basic

oracle penalty function (3.2) is an example of such a function:

p(x, y) = AΩ(f(x, y), res(x, y)) · |f(x, y)− Ω|+ (1−AΩ(f(x, y), res(x, y))) · res(x, y),

(3.2)

where AΩ(f(x, y), res(x, y)) is given by:

AΩ(f(x, y), res(x, y)) =


1− 1

2
√
|f(x,y)−Ω|
res(x,y)

, if res(x, y) 6 |f(x, y)− Ω|,

1
2

√
|f(x,y)−Ω|
res(x,y)

, if res(x, y) > |f(x, y)− Ω|.
(3.3)

Note that the function (3.2) is actually a merit function, as it expresses a measurement

for the feasibility and the distance of the current objective function value to the expected

one, given as Ω. However, as the term ”penalty function” is most widely used in stochastic

metaheuristics and function (3.2) complies with Definition 2.2, it is always referred to here

as penalty function. Furthermore note that the function AΩ(f(x, y), res(x, y)), which

assumes f(x, y) and res(x, y) as arguments and Ω as parameter, is substituted in the

following by α := AΩ(f(x, y), res(x, y)) for readability reasons.

The factor α is constructed as a dynamic weight between zero and one. This factor

balances the penalty function value p(x, y) in respect to the relationship between |f(x, y)−

49

Ω| and res(x, y). If res(x, y) 6 |f(x, y)−Ω| the quotient |f(x,y)−Ω|
res(x,y)

will be greater or equal

to one, which results in a value of α between 0.5 and 1. Hence, the penalty function will

focus its weight on the transformed objective function. In case res(x, y) > |f(x, y) − Ω|

the quotient |f(x,y)−Ω|
res(x,y)

will be smaller than one, which results in a value of α between 0

and 0.5. Therefore the penalty function will focus its weight on the residual.

Figure 3.1 illustrates the basic oracle penalty function p(x, y) for an Ω parameter equal

to zero according to objective function values f(x, y) ∈ [−10, 10] and residual function

values res(x, y) ∈ [0, 10]. Note that the shape of the penalty function is not affected by

different Ω parameters. A different Ω parameter will result only in a movement to the

right (Ω > 0) or left (Ω < 0) according to the x-axis, representing the objective function

values.

50

Figure 3.1: The basic oracle penalty function for Ω = 0

The proposed basic oracle penalty function suffers from a significant drawback. It is

absolute sensitive with regard to the oracle parameter selection. To guide an algorithm to

the global optimal solution of a problem, information about the global optimal objective

function value is essential to apply the basic oracle penalty function.

51

3.2.2 Extensions for the Basic Oracle Penalty Function

With intention to apply the oracle penalty method on problems where no information

is known about the optimal objective function value f(x∗, y∗), this section describes

modifications which make the method more robust regarding oracle parameter selection

Ω 6= f(x∗, y∗). However, the modifications carried out here still assume two conditions

for oracle parameters. This is Ω > f(x∗, y∗) and that at least one feasible solution (x̃, ỹ)

exists, so that Ω = f(x̃, ỹ) > f(x∗, y∗). These two conditions define a set of oracle pa-

rameters which is denoted as trust oracles. The set TΩ defining all trust oracles is given

by:

TΩ := {f(x̃, ỹ) | gi(x̃, ỹ) = 0 (i = 1, ...,me) ∧ gi(x̃, ỹ) ≥ 0 (i = me + 1, ...,m)}. (3.4)

Obviously a trust oracle can also be used as oracle parameter within the basic oracle

penalty function (3.2). Such a parameter selection will guide an algorithm, minimizing

the corresponding penalty function, to a feasible solution (x̃, ỹ) with f(x̃, ỹ) = Ω. Never-

theless, based on the symmetric structure of the penalty function (3.2), no feasible iterate

(x, y) with f(x, y) < Ω will be penalized lower than (x̃, ỹ) with f(x̃, ỹ) = Ω.

The first modification concerns the desired property of the penalty function, to penal-

ize any feasible iterate (x, y) with f(x, y) < Ω lower than a feasible iterate (x̃, ỹ) with

f(x̃, ỹ) = Ω and therefore p(x̃, ỹ) = 0. This can be easily achieved by splitting the penalty

function (3.2) into two cases. The first case affects any iterate with an objective function

value greater than the oracle or any infeasible iterate, while the second case concerns only

52

feasible iterates with an objective function value lower than the oracle:

p(x, y) =


α · |f(x, y)− Ω|+ (1− α) · res(x, y) , if f(x, y) > Ω or res(x, y) > 0,

−|f(x, y)− Ω| , if f(x, y) 6 Ω and res(x, y) = 0.

(3.5)

Due to this modification any feasible iterate (x, y) with f(x, y) < Ω will be penalized with

a negative value. Moreover, a smaller f(x, y) directly results in a better (lower) penalty

function value, which seems quite reasonable. In other words, just the objective function

f(x, y) is minimized in case its value is lower or equal to Ω. However, as iterates must

be compared to each other in respect to the penalty function, the term −|f(x, y)− Ω| is

used here within function (3.5). Furthermore note that this first modification introduces

a discontinuity in the penalty function, but as such property is only of concern to deter-

ministic algorithms, it is not consider a major drawback here for stochastic metaheuristics

(where the oracle penalty method is intended for).

The second modification concerns infeasible iterates corresponding to objective function

values lower than Ω. Imagine a just slightly infeasible iterate (x̂, ŷ) with an objective

function value f(x̂, ŷ) much lower than Ω. Such an iterate would be penalized higher

than any iterate with the same residual greater than f(x̂, ŷ) and lower than Ω. Modifying

the α factor by adding a new case overcomes this undesired property. In case of an

infeasible iterate (x̂, ŷ) with f(x̂, ŷ) 6 Ω, the penalty function should penalize the iterate

53

with its residual res(x̂, ŷ). This means, α is zero in such a case:

α =



1− 1

2
√
|f(x,y)−Ω|
res(x,y)

, if res(x, y) 6 |f(x, y)− Ω| and f(x, y) > Ω,

1
2

√
|f(x,y)−Ω|
res(x,y)

, if res(x, y) > |f(x, y)− Ω| and f(x, y) > Ω,

0 , if f(x, y) 6 Ω.

(3.6)

The third modification concerns iterates (ẋ, ẏ) with f(ẋ, ẏ) > Ω and res(ẋ, ẏ) 6 |f(ẋ,ẏ)−Ω|
3

.

For such iterates a highly undesired effect occurs: An iterate (ẋ, ẏ) with f(ẋ, ẏ) > Ω and

res(ẋ, ẏ) < |f(ẋ,ẏ)−Ω|
3

will be penalized higher than an iterate (ẍ, ÿ) with f(ẋ, ẏ) = f(ẍ, ÿ)

and res(ẍ, ÿ) = |f(ẍ,ÿ)−Ω|
3

. In other words, even though the iterate (ẋ, ẏ) is equally good

in the objective function as the iterate (ẍ, ÿ) and (ẋ, ẏ) has a lower residual (maybe even

zero) than (ẍ, ÿ), it will be penalized higher than (ẍ, ÿ).

This effect is caused by the construction of α and can also be observed in the shape of

the basic penalty function in Figure 3.1. The area of the shape which bends upwards

in the front right part of the figure relates to this effect. Now a modification is carried

out, which resolves this effect by constructing an additional case for α. This α case will

ensure, that any iterate (ẋ, ẏ) with the above properties is penalized with the same value

as an iterate (ẍ, ÿ) with the above properties. This means, that the mentioned area in

Figure 3.1 would be plane (see Figure 3.2).

To obtain this additional case for α it is shown first that the penalty function p(x, y) in

(3.5), concerning only iterates (x, y) with an identical objective function value f(x, y) > Ω,

takes its minimum for an iterate with res(x, y) = |f(x,y)−Ω|
3

. Then the corresponding

penalty function value will be calculated and used to deduce the additional case for α.

54

Let

f(x, y) > Ω and res(x, y) 6 |f(x, y)− Ω|,

then

α = 1− 1

2
√
|f(x,y)−Ω|
res(x,y)

and

p(x, y) = α · |f(x, y)− Ω|+ (1− α) · res(x, y)

=⇒ p(x, y) = (1− 1

2
√
|f(x,y)−Ω|
res(x,y)

) · |f(x, y)− Ω|+ (1− (1− 1

2
√
|f(x,y)−Ω|
res(x,y)

)) · res(x, y)

= |f(x, y)− Ω| − |f(x, y)− Ω|

2
√
|f(x,y)−Ω|
res(x,y)

+
res(x, y)

2
√
|f(x,y)−Ω|
res(x,y)

= |f(x, y)− Ω| −
|f(x, y)− Ω|

√
res(x, y)

2
√
|f(x, y)− Ω|

+
res(x, y)

√
res(x, y)

2
√
|f(x, y)− Ω|

.

To investigate the deviation of p(x, y) with respect to res(x, y), the residual function

res(x, y) is substituted by R and the function p̃(R) is defined by:

p̃(R) := (1− 1

2
√
|f(x,y)−Ω|
R

) · |f(x, y)− Ω|+ (1− (1− 1

2
√
|f(x,y)−Ω|
R

)) · R.

55

The derivative of p̃(R) with respect to R is given by:

d

dR
p̃(R) = − |f(x, y)− Ω|

4
√
|f(x, y)− Ω|

√
R

+
3
√
R

4
√
|f(x, y)− Ω|

.

Let

d

dR
p̃(R) = 0,

then

|f(x, y)− Ω|
4
√
|f(x, y)− Ω|

√
R

=
3
√
R

4
√
|f(x, y)− Ω|

⇐⇒ |f(x, y)− Ω|√
R

= 3
√
R

⇐⇒ R =
|f(x, y)− Ω|

3
.

Under the above assumption the second derivative of p̃(R) with respect to R is given by:

d2

d2R
p̃(R) =

√
|f(x, y)− Ω|

8R
√
R

+
3

8
√
R
√
|f(x, y)− Ω|

> 0.

This means that the penalty function (under the above assumptions) takes its minimum

for iterates (x, y) with identical objective function value f(x, y) and res(x, y) = |f(x,y)−Ω|
3

.

Now the penalty function value for such an iterate is calculated. Let

f(x, y) > Ω and res(x, y) =
|f(x, y)− Ω|

3
,

56

then

α = 1− 1

2
√

3

=⇒ p(x, y) = (1− 1

2
√

3
) · |f(x, y)− Ω|+ 1

2
√

3
· |f(x, y)− Ω|

3

= |f(x, y)− Ω| − |f(x, y)− Ω|
2
√

3
+
|f(x, y)− Ω|

6
√

3

= |f(x, y)− Ω| · (1− 1

2
√

3
+

1

6
√

3
)

= |f(x, y)− Ω| · 6
√

3− 2

6
√

3
.

Now the penalty function (3.5) (under the above assumptions) is set equal to the above

optimal penalty function value to deduce α. Let

α · |f(x, y)− Ω|+ (1− α) · res(x, y) = |f(x, y)− Ω| · 6
√

3− 2

6
√

3
,

then

α · (|f(x, y)− Ω| − res(x, y)) + res(x, y) = |f(x, y)− Ω| · 6
√

3− 2

6
√

3

=⇒ α · (|f(x, y)− Ω| − res(x, y)) = |f(x, y)− Ω| · 6
√

3− 2

6
√

3
− res(x, y)

=⇒ α =
|f(x, y)− Ω| · 6

√
3−2

6
√

3
− res(x, y)

|f(x, y)− Ω| − res(x, y)
.

57

This α factor can now be applied as additional case within (3.6) for iterates (x, y) with

res(x, y) 6 |f(x, y) − Ω| and f(x, y) > Ω. All iterates (x, y) with identical objec-

tive function value f(x, y) > Ω and res(x, y) 6 |f(x,y)−Ω|
3

will then be penalized with

|f(x, y)− Ω| · 6
√

3−2
6
√

3
.

3.2.3 Extended Oracle Penalty Function

In this section the basic oracle penalty function, presented in Subsection 3.2.1, is extended

by the three modification explained in Subsection 3.2.2. The extended oracle penalty

function is of the form:

p(x, y) =


α · |f(x, y)− Ω|+ (1− α) · res(x, y) , if f(x, y) > Ω or res(x, y) > 0,

−|f(x, y)− Ω| , if f(x, y) 6 Ω and res(x, y) = 0.

(3.7)

where α is given by:

α =



|f(x,y)−Ω|· 6
√

3−2
6
√

3
−res(x,y)

|f(x,y)−Ω|−res(x,y)
, if f(x, y) > Ω and res(x, y) < |f(x,y)−Ω|

3
,

1− 1

2
√
|f(x,y)−Ω|
res(x,y)

, if f(x, y) > Ω and |f(x,y)−Ω|
3

6 res(x, y) 6 |f(x, y)− Ω|,

1
2

√
|f(x,y)−Ω|
res(x,y)

, if f(x, y) > Ω and res(x, y) > |f(x, y)− Ω|,

0 , if f(x, y) 6 Ω.

(3.8)

Figure 3.2 illustrates the extended oracle penalty function p(x, y) for a parameter Ω equal

to zero according to objective function values f(x, y) ∈ [−10, 10] and residual function

values res(x, y) ∈ [0, 10]. Again, note that the shape of the penalty function itself is not

58

affected by different choices of the oracle parameter. Those will only result in a movement

of the shape to the right (Ω > 0) or the left (Ω < 0).

Figure 3.2: The extended oracle penalty function for Ω = 0

Now it is explained how the three modifications can be observed in the shape of the

extended oracle penalty function, illustrated in Figure 3.2. The first modification, con-

cerning feasible iterates (x, y) with f(x, y) < Ω, corresponds to the vertical triangu-

lar (in the left front), penalizing those iterates with a negative penalty function value.

The second modification, concerning infeasible iterates (x̂, ŷ) with f(x̂, ŷ) 6 Ω, corre-

sponds to the plane area (in the left back), penalizing those iterates with their residual

function value. The third modification, concerning iterates (ẋ, ẏ) with f(ẋ, ẏ) > Ω and

59

res(ẋ, ẏ) 6 |f(ẋ,ẏ)−Ω|
3

, corresponds to the small plane area (in the right front) of the shape

of the penalty function. While this area is nonlinear in the basic oracle penalty function

shape, it is now plane, meaning that those iterates are penalized equal as iterates (ẍ, ÿ)

with f(ẍ, ÿ) = f(ẋ, ẏ) and res(ẍ, ÿ) = |f(ẍ,ÿ)−Ω|
3

.

As explained in Subsection 3.2.4 those modifications are intended to make the method

robust regarding trust oracles (3.4). However, due to the first and second modification,

the extended oracle penalty function can also be applied for sufficiently large oracle pa-

rameters. Sufficiently large means here that Ω > f(x, y) for any iterate (x, y). For such an

oracle parameter only the first and second modifications are relevant in the penalty func-

tion. This means, infeasible iterates x will be penalized with their residual res(x, y) > 0,

while feasible iterates (x, y) will be penalized with the negative distance −|f(x, y) − Ω|.

Hence, for sufficiently large oracle parameters the extended oracle penalty function will

act very similar to a static penalty function (see Table 3.2).

3.2.4 Update Rule and Implementation

Here a simple but effective update rule for the oracle parameter Ω is presented. It is

intended to be applied if no information about the optimal feasible objective function

value is known and several optimization runs are performed. However, it is not assumed

that the oracle parameter Ω is changed during an optimization run! Here an optimization

run is defined as a set of successive performed generations of the algorithm (see Definition

2.3).

Let Ωi denote the oracle parameter used for the i-th optimization run. Furthermore f i

and resi should denote the objective function value and residual function value obtained

60

by the i-th optimization run. The here proposed update rule will initialize the oracle

parameter Ω1 for the very first run with a sufficiently large parameter. This means

Ω > f(x, y) for any iterate (x, y) to a given problem. As explained in Subsection 3.2.3 the

extended oracle penalty function will than act very similar to a static penalty function.

This means the method is focused completely on the residual until a feasible solution is

found. Note, that a too large initialization of the oracle parameter (e.g. Ω = 1032) can

cause numerical problems. An initialization of the oracle parameter of about Ω = 106 or

Ω = 109 is therefore recommended for most applications.

The oracle parameters Ωi=2,3,4,... used for any further optimization run should then be

calculated by the following update rule:

Ωi =

{
f i−1 ,if f i−1 < Ωi−1 and resi−1 = 0,

Ωi−1 ,else.
(3.9)

According to (3.9) the oracle parameter Ωi for the i-th optimization run is then always

equal to the lowest known feasible objective function value or (in case no feasible solution

is found so far) remains sufficiently large, until a feasible solution is found. This is

done by updating the oracle parameter with the latest feasible solution which has a lower

objective function value than the present oracle parameter or leaving the oracle parameter

unaffected, in case the solution is infeasible or has a larger objective function value than

the present oracle parameter.

Note that the update rule presented in equation (3.9) essentially requires to stay feasible

during the algorithmic restarts, which can be slow. Other update rules, which use more

ambitious oracle parameters, which do not necessarily belong to the set of trust oracles

TΩ (3.4), might be possible, but are not recommended here, as they might be cause the

61

algorithm to get stuck in finding an impossible solution.

For a specific problem an intuitive initialization of the very first oracle parameter Ω1

by the user is possible as well. Imagine a real world application with an already known

(feasible) solution, in such a case the user could initialize Ω1 with a value reasonable lower

than the current known solution objective function value. This property of an easy and

intuitive handling of the oracle method is seen as quite appealing for practitioners.

Algorithm 2 gives a pseudo-code implementation of the extended oracle penalty function.

For a given objective function value f(x, y), a residual value res(x, y), an oracle Ω and

some tolerance acc > 0 (where acc is the user defined tolerance for the constraint vio-

lation), this algorithm calculates the corresponding penalty function value p(x, y). Due

to the if-clauses in this implementation, the computational expensive α parameters are

only calculated case dependent and if necessary.

62

Algorithm 2 Extended oracle penalty function

if f(x, y) 6 Ω and res(x, y) 6 acc then

p(x, y) = f(x, y)− Ω

else

if f(x, y) 6 Ω then

p(x, y) = res(x, y)

else

if res(x, y) < f(x,y)−Ω
3

then

α =
(f(x,y)−Ω) 6

√
3−2

6
√

3
−res(x,y)

f(x,y)−Ω−res(x,y)

end if

if res(x, y) > f(x,y)−Ω
3

and res(x, y) 6 (f(x, y)− Ω) then

α = 1− 1

2
√
f(x,y)−Ω
res(x,y)

end if

if res(x, y) > (f(x, y)− Ω) then

α = 1
2

√
f(x,y)−Ω
res(x,y)

end if

p(x, y) = α(f(x, y)− Ω) + (1− α)res(x, y)

end if

end if

return p(x, y)

Implementations of the extended oracle penalty method in the programming languages

Fortran, C/C++ and Matlab can be found online [42] and can be downloaded.

63

Chapter 4

MIDACO Software

This section provides information on the software named MIDACO, which stands for

Mixed Integer Distributed Ant Colony Optimization. MIDACO implements the extended

ACO algorithm for MINLP introduced in Chapter 2 (see also [43] and [44]) in combination

with the oracle penalty method described in Chapter 3 (see also [45]). For practical

efficiency reasons, the software is further enhanced by some ACO relevant heuristics, which

can be found in [44]. MIDACO solves the general MINLP (Definition 2) described in the

Introduction. In addition to the feasible set K (Definition 1), MIDACO assumes a set of

lower and upper bounds ({xlower, ylower} and {xupper, yupper}) for the decision variables x

and y. This additional set of constraints is also known as box constraints. Equation (4.1)

illustrates the MINLP as assumed by MIDACO. Note that functions f(x, y) and g(x, y)

are considered as black box functions by MIDACO. This means that the actual function

calculation is considered to happen in a virtual black box (for example some software

library) without any inside knowledge and only the function values are returned, after the

actual calculation has happened.

64

Based on this black box concept, MIDACO does not require any assumptions on the

objective or constraint functions (like convexity, differentiability or continuity) at all and

can therefore be applied on a wide range of problems.

Minimize f(x, y) (x ∈ Rncon , y ∈ Znint : ncon, nint ∈ N0),

subject to: gi(x, y) = 0, (i = 1, ...,me ∈ N0),

gj(x, y) > 0, (j = me + 1, ...,m ∈ N0),

and box constraints: xlower 6 x 6xupper, (xlower, xupper ∈ Rncon : xlower 6 xupper),

ylower 6 y 6yupper, (ylower, yupper ∈ Znint : ylower 6 yupper).

(4.1)

MIDACO has been developed for over five years now and is originally written in Fortran77.

It has furthermore a C translation and a Matlab and MS-Excel gateway. The software is

entirely written from scratch and does not require any dependencies, like libraries, external

routines or compiler dependent random number generators. Uniform random numbers are

generated by an internal implementation of a Xorshift generator [35] and transformed to

normal distributed ones via the Box-Muller [7] method (see Lemma 2.14). MIDACO does

not relax discrete optimization variables, this means objective and constraint functions

are evaluated only at integer points for discrete decision variables. A main feature of

the software is its user friendliness and easy compilation, since it is distributed within

a single file for Fortran (midaco.f) and C (midaco.c) and within only two separated

files for Matlab (midaco.m + midacox.c). The software has been successfully tested

with different compilers (g77, gFortran, g95, gcc, ifort, NAG-Fortran) and on different

platforms (Windows, Linux, Mac).

65

The software handles all its parameters by itself (if not selected differently by the user)

in an autopilot like mode. It constantly performs automatic restarts to escape from local

solutions and to refine the current best solution. The later feature enables the algorithm to

be executed even over a long time horizon, without the necessity of any user interference.

The latest version of the software is well applicable on problems with up to hundreds and

even thousands of optimization variables. Table 4.1 lists the problem dimension scalability

intended for MIDACO based in the kind of search domain type (purely continuous (NLP),

purely combinatorial/integer (IP) and mixed integer (MINLP)).

Table 4.1: Problem dimension scalability by MIDACO
Problem Type Dimension

MINLP (mixed integer) 500

NLP (continuous) 1.000

IP (combinatorial/integer) 10.000

4.1 Reverse Communication and Distributed Com-

puting

A key feature of MIDACO is, that it is called by reverse communication. This means,

that the call to the objective function and constraints happens outside the MIDACO

source code. This concept does not only guarantee a numerically stable gateway to other

languages (like Matlab or MS-Excel), but also enables the software to feature a valuable

option of distributed computing. Within one reverse communication step MIDACO does

accept and returns an arbitrary large number of L iterates at once. Hence, those L iterates

can be evaluated regarding their objective and constraint functions in parallel, outside

and independently from the MIDACO source code. This idea of passing a block of L

iterates at once within one reverse communication step to the optimization algorithm is

66

taken from the code NLPQLP by Schittkowski [41].

Figure 4.1: The reverse communication loop over a block of L iterates (x, y)

Figure 4.1 illustrates the essential reverse communication loop over the function evaluation

calls to f(x, y) and g(x, y) and the MIDACO code. Within one loop, a block of L iterates

is evaluated regarding their objective function f(x, y) and constraints g(x, y). Then those

iterates are passed together with their corresponding objective and constraint values to

the MIDACO code. Within MIDACO those iterates are then processed and MIDACO

calculates and returns a new block of L iterates that needs to be evaluated again.

This concept allows an independent and user controlled distributed computing of the ob-

jective and constraint function evaluation. In other words, the parallelization option is

valid for any language on any CPU architecture without the necessity of adapting the MI-

DACO source code in any way. This includes in particular multi-core PC’s, PC-Clusters,

GPU (Graphical Processing Unit) based computation and HPC (High Performance Com-

puting). As the parallelization factor L can be arbitrary large, MIDACO is absolute

suitable for massive parallelization. The parallelization option is considered a valuable

67

feature, that enables the use of MIDACO even on very cpu time consuming problems (see

Section 5.4). To the best knowledge of the author, MIDACO is so far the only available

evolutionary algorithm implementation, that offers such a broad parallelization feature

based on the reverse communication concept.

4.2 Parameters and Print Options

With regard to the user friendliness, MIDACO does not require any parameters to be

set. For experienced users however, there are seven parameters available to adjust the

software to a specific need or problem. By default, all these parameters are set to zero

and MIDACO will select them internally by some autopilot mode. If one of those is set

not equal to zero by the user, it is activated and the software will act accordingly. In the

following, all seven optional parameters are described:

Seed - Parameter:

Initial seed for internal Xorshift [35] pseudo random number generator within MIDACO.

The Seed determines the sequence of pseudo random numbers in the interval [0, 1] sam-

pled by the generator. For example Seed = 0 may imply a random number sequence such

as {0.3, 0.9, 0.6, 0.2, ...}, while Seed = 1 may imply a random number sequence such

as {0.4, 0.1, 0.8, 0.7, ...}. Therefore MIDACO runs using an identical Seed, will pro-

duce exactly the same results (executed on the same computer under identical compiler

conditions). As the Seed may be an arbitrary integer greater or equal to zero, the user

can easily generate (stochastically) different runs, using a different Seed parameter. The

advantage of a user specified random seed is, that promising runs can easily be reproduced

by knowing the applied Seed parameter. This is in especially useful, if a run must be

stopped out of some reason and should be restarted again.

68

Qstart - Parameter:

This parameter allows the user to specify the quality of the starting point. If Qstart is

set greater than 0, the initial population of iterates (also called ants) is sampled closely

around the starting point (and the best known solution further on). In particular, the

standard deviation for continuous variables is set to |xl − xu|/Qstart and the mean is set

to the corresponding dimension of the starting point. For integer variables the standard

deviation is set to max{|yl− yu|/Qstart, 1/
√
Qstart} to avoid a too tight sampling. The

greater Qstart is selected, the more closely does MIDACO search around the starting

point. This option is very useful to refine previously calculated solutions. It is important

to note, that this option does not shrink the search space! The original bounds xl, yl and

xu, yu are still valid, only the populations of ants are specifically focused within these

bounds. Further note, that Qstart can also be used to focus the algorithmic search of

MIDACO, because the reduced standard deviations are not only applied to the starting

point, but also to any further best known solution found by MIDACO.

Autostop - Parameter:

This parameter activates an internal stopping criteria for MIDACO. While it is recom-

mended, that the user will run MIDACO for a fixed time or evaluation budget, this option

allows the software to stop the optimization run by itself. Autostop defines the amount

of internal restarts in sequence, which did not reveal an improvement in the objective

function value. The greater Autostop is selected, the higher the chance of reaching global

optimality, but also the longer the optimization run. As Autostop can be selected any

integer greater or equal to zero, it gives the user the freedom to compromise between

global optimality and cpu run time to his or her specific needs.

69

Oracle - Parameter:

This parameter specifies a user given oracle parameter Ω (see Chapter 3) to the penalty

function within MIDACO. If Oracle is selected not equal to zero, MIDACO will use the

Oracle as long as a better feasible solution has been found. In that case the regular oracle

update (see Subsection 3.2.4) starts to take place. This option can be useful for problems

with difficult constraints where some background knowledge on the problem exists.

Ants - Parameter:

This parameter fixes the amount of individuals (also called ants, see Definition 2.3) within

a generation. This option can be useful to adapt MIDACO to expensive cpu time prob-

lems, or problems with many variables (e.g. more than hundred).

Kernel - Parameter:

This parameter fixes the kernel K (Definition 2.4), defining the amount of individuals

saved in the solution archive S (Definition 2.4). The Kernel parameter must be used in

combination with the Ants parameter and is intended to make MIDACO more efficiently

on specific problems.

Character - Parameter:

This parameter activates a specific set of MIDACO internal parameters specially tuned for

either purely continuous, purely combinatorial or mixed integer problems. If Character

is set to zero, MIDACO will select the according set of internal parameters solely based

on the problem dimensions n and nint. The intention of this option is to allow the user to

manually activate a different set, if a problem has a specific structure. For example, con-

sider a mixed integer problem with 99 continuous variables and only one integer variable.

In such a case it might be more promising to activate the internal Character for purely

continuous, rather than the one for mixed integer, problems.

70

For the sake of a maximal portability and efficiency, the MIDACO Fortran77 and C source

code does not include any printing commands by itself. Printing options are available

by external subroutines freely distributed with example calls of MIDACO in different

languages. Those routines allows the user to specify the printing to his or her specific

needs with high accuracy. The routines especially feature the option to print the current

best solution to a file in a user defined frequency of function evaluation. In other words,

the user has access to the current best solution vector at any time during the optimization

process. This is an important feature for applications, that are executed over a long time

horizon (where the run might get corrupted and the solution would get lost otherwise).

4.3 Hybridization with SQP

In Section 6.1 and Section 6.6 MIDACO has been used in a coupled approach together

with an SQP algorithm (SQP-Filtertoolbox by Prof. Gerdts, http://www.unibw.de/

lrt1/gerdts/software). Here the details on this hybridization are illustrated. The

most straight forward approach was applied, which is the splitting of the optimization

process into two separate steps: First MIDACO is applied on the MINLP problem using

the lower bounds (xlower, ylower) as starting point, second SQP is applied on the fixed

NLP problem (similar to Equation 1.2 from Section 1.2) using the best solution revealed

by MIDACO as starting point. Note that MIDACO introduces a starting point (x0, y0) as

first individual (Ant1) within the first generation (G1) of its algorithmic procedure (see

the example calculation of ACO in Subsection 2.4.1). Equation (4.2) states the MINLP

71

http://www.unibw.de/lrt1/gerdts/software
http://www.unibw.de/lrt1/gerdts/software

problem supposed for MIDACO considering a specific starting point (x0, y0):

Minimize f(x, y) (x ∈ Rncon , y ∈ Znint),

subject to: gi(x, y) = 0, (i = 1, ...,me),

gj(x, y) > 0, (j = me + 1, ...,m),

xlower 6 x 6xupper, (xlower, xupper ∈ Rncon : xlower 6 xupper),

ylower 6 y 6yupper, (ylower, yupper ∈ Znint : ylower 6 yupper),

and starting point (x0, y0): x0 = xlower, y0 = ylower.

(4.2)

Let (x∗midaco, y
∗
midaco) be the solution revealed by MIDACO to the original MINLP (4.2).

Then SQP is applied on the fixed NLP (4.3), where the integer parameters y are fixed to

the integer solution variables y∗midaco given by MIDACO and the continuous starting point

x0 equals the continuous solution variables x∗midaco given by MIDACO.

Minimize f y(x) (x ∈ Rncon , y ∈ Znint),

subject to: gyi (x) = 0, (i = 1, ...,me),

gyj (x) > 0, (j = me + 1, ...,m),

xlower 6 x 6xupper, (xlower, xupper ∈ Rncon : xlower 6 xupper),

y =y∗midaco ∈ Znint ,

and starting point (x0): x0 = x∗midaco ∈ Rncon .

(4.3)

72

Chapter 5

Numerical Results on MINLP

Benchmark Sets

In this chapter extensive numerical results by MIDACO (see Chapter 4) on comprehensive

MINLP benchmark sets (with up to 100 test problem instances) are presented. This is

done to demonstrate the usefulness and potential of the new algorithms developed within

this thesis (in esp. the mixed integer extended ACO algorithm in Chapter 2, and the or-

acle penalty method in Chapter 3) in the general area of MINLP. The first section of this

chapter investigates in particular the performance of the oracle penalty method in com-

parison with commonly used constraint handling techniques used in stochastic algorithms.

The second and third section of this chapter evaluates the MIDACO performance on a

set of 100 (resp. 66) non-convex MINLP problems and compares the results to three es-

tablished deterministic MINLP solvers (namely MISQP, BONMIN and COUENNE). The

fourth and last section of this chapter explores the impact of (massive) parallelization,

that is an optional feature of the MIDACO software.

73

This chapter shows, that the oracle penalty method is fully competitive with commonly

used advanced penalty approaches in stochastic algorithms, while offering the significant

advantage of only one required parameter. On the comprehensive test bed of 100 (resp.

66) MINLP benchmarks, MIDACO does clearly outperform established MINLP software

in respect to the amount of global optimal solutions found. Furthermore it can be seen

that MIDACO is competitive or even outperforms the other solvers in terms of cpu runtime

performance. The significant benefit of parallelization is demonstrated at last, were it can

be shown that MIDACO can even be competitive to deterministic algorithms in respect

to the number of function evaluation (if massive parallelization is available).

5.1 Evaluation of the Oracle Penalty Method

A set of 60 constrained MINLP benchmark problems from the open literature is con-

sidered to compare the performance of the here proposed oracle penalty method (see

Chapter 3) with commonly used penalty functions in evolutionary algorithms. Details on

all benchmark problems can be found in the Appendix 6.6.5 in Table 25.

As penalty functions we consider besides the extended oracle penalty function (3.7) the

static, death and adaptive one (see Table 3.2). For the numerical test different parameter

setups for some penalty functions have been applied. Table 5.1 contains information on

the penalty functions and parameters used. The extended oracle penalty function was

tested with two setups. One time the oracle parameter remained constant throughout all

test runs for a problem, while the other time this parameter was updated according to

the update rule presented in Subsection 3.2.4. The static penalty was tested with only

one setup and the death penalty does not require any parameter. The adaptive penalty

was tested with three different parameter setups, where the first one (adaptive1) uses the

74

same parameters as proposed in Coello Coello [10].

Table 5.1: Penalty functions and their parameters considered for numerical results
Abbreviation Penalty function Section Parameters

oracleupdate Extended oracle 3.2.3 Ω1 = 109, Ω2,3,... updated

oraclefix Extended oracle 3.2.3 Ω = 109

static Static 3.1 K = 109

death Death 3.1 none

adaptive1 Adaptive 3.1 λ(1) = 100, β1 = 1, β2 = 2, k = 20

adaptive2 Adaptive 3.1 λ(1) = 50, β1 = 1.5, β2 = 2.5, k = 10

adaptive3 Adaptive 3.1 λ(1) = 200, β1 = 2, β2 = 3, k = 40

Every problem of the set was tested 100 times with a different random seed for the random

number generator within MIDACO. For every single test run two stopping criterions were

applied. The first one is a maximal budget of fitness evaluations, where one fitness

evaluation equals an objective function evaluation and all constraint function evaluations.

We assigned a budget of 10000 · n fitness evaluations for every test run, where n is the

dimension of the optimization variables. The second one is a success criteria based on the

best known objective function value f(x∗, y∗) (see Table 25). If a feasible solution x with

an objective function value f(x, y) was found, so that:

|f(x, y)− f(x∗, y∗)|
f(x∗, y∗)

6 acc, (5.1)

the run was stopped and recorded as successful in finding the global optimal solution.

Here an accuracy acc of 10−4 was used, which was also set as accuracy for the constraints

(see acc tolerance in Algorithm 2).

The overall performance of all tested penalty functions on the set of 60 problems is

displayed in Table 5.3, where Table 5.2 explains the abbreviations used. Detailed results

on every problem and every penalty function can be found in the Appendix 6.6.5 in Table

75

29, where Table 27 explains the abbreviations used.

Table 5.2: Abbreviations for Table 5.3
Abbreviation Explanation

Penalty Penalty function used in MIDACO

Optimal (out of 60, [%]) Number of problems where at least one out of

100 runs a global optimal solution was found.

Feasible (out of 60, [%]) Number of problems where at least one out of

100 runs a feasible solution was found.

Table 5.3: Overall performance of different penalty methods
Penalty Optimal (out of 60, [%]) Feasible (out of 60, [%])

Oracleupdate 56 [0.93] 60 [1.00]

Oraclefix 48 [0.80] 60 [1.00]

Static 50 [0.83] 60 [1.00]

Death 40 [0.67] 57 [0.95]

Adaptive1 48 [0.80] 59 [0.98]

Adaptive2 49 [0.82] 59 [0.98]

Adaptive3 52 [0.87] 60 [1.00]

With 56 out of 60 problems the extended oracle penalty function with updated oracles

had the highest potential in solving a problem to the global optimum. With 52 out of

60 problems the Adaptive3 performed second best in finding global optimal solutions.

Interpreting this result, one has to take further into account, that the adaptive penalty

function needs four parameters to be tuned, while the oracle penalty method only needs

one.

As expected, the extended oracle penalty function with fixed oracle and the static penalty

function performed very similar (see Subsection 3.2.3), this can especially be observed in

the statistics on all runs. Those two penalty functions performed most robust in finding

feasible solutions, but lacked of potential to find global optimal solutions on more difficult

problems. Not surprisingly the death penalty performed worst in all categories.

76

That the death penalty was able to locate the global optimal solution in 40 out of 60

cases, means that two third of the test problems are trivial or easy. Nevertheless, this

leaves 20 non-trivial problems in the set on which significant differences between the tested

penalty functions could be observed. On four problems no penalty function was able to

find the global optimal solution. On these problems the results are not clear. On the

problems nvs02 and nvs05 the Oracleupdate performed best, while on floudas4 and ST E36

the Oraclefix and static penalty function performed best (see Appendix 6.6.5, Table 29).

5.2 MIDACO Performance Comparison with MISQP

This section presents numerical results obtained by MIDACO on a set of 100 non-convex

MINLP benchmark problems from the open literature. The set of benchmark problems

is provided in Fortran by Schittkowski [40] and can be downloaded at

http://www.math.uni-bayreuth.de/~kschittkowski/mitp_coll.htm

Note, that many of these problems are originally taken form the GAMS library MINLPlib

[22]. The dimension of these problems range between 2 and 100. The number of nonlinear

constraints range between 0 to 54 with up to 17 equality constraints. The problems are

either mixed integer or purely combinatorial problems. In conclusion, this set provides a

comprehensive variety of small to medium scaled MINLP problems and allows a rigorous

testing of software codes written in Fortran.

This section will first summarize already published results obtained by some deterministic

SQP-based algorithms on the problem set. Then, numerical results by MIDACO are pre-

sented and compared to the ones obtained by the SQP-based algorithms. The numerical

77

http://www.math.uni-bayreuth.de/~kschittkowski/mitp_coll.htm

results in this contribution refer to the MIDACO using its default parameters. As initial

points the lower bounds provided for every problem in Schittkowski [40] have been used

in all cases. The numerical results presented here have been performed on a computer

with an Intel(R) Xeon(R) E5640 CPU with 2.67GHz clock rate.

5.2.1 Performance of SQP-based Algorithms

In a recent study by Exler et al. [17] eight sophisticated implementations of SQP-based

algorithms (named MISQP) for MINLP were presented and evaluated on this set of 100

benchmarks. Table 5.4 contains essential information (taken from Exler et al. [17]) on

the performance of these eight algorithms. The abbreviations of Table 5.4 are as follows:

Algorithm - Name of the SQP-based algorithm for MINLP used in Exler et al. [17]

Optimal - Number of global optimal solutions obtained out of 100 problems

Feasible - Number of feasible solutions obtained out of 100 problems

Evalmean - Average number of function evaluations over 100 problems

Table 5.4: Performance of SQP-based algorithms on 100 MINLP benchmarks
Algorithm Optimal Feasible Evalmean Timemean
MISQP 89 100 500 0.39

MISQP/bmod 71 100 340 0.20

MISQP/fwd 81 100 396 0.11

MISQP/rst0 69 99 241 0.14

MISQPOA 91 100 1,093 0.65

MISQPN 74 98 1,139 0.17

MINLPB4/bin 92 100 1,787 30.91

MINLPB4/int 88 94 218,881 4.11

The algorithms MISQP/bmod, MISQP/fwd and MISQP/rst0 represent different variants

of the basic-MISQP algorithm. The algorithms MISQPOA and MISQPN are enhanced

by an Outer Approximation method. The algorithms MINLPB4/bin and MINLPB4/int

78

are enhanced by Branch and Bound. For detailed information on all algorithms consult

Exler et al. [17]. Determining the success of an algorithm in finding a global (or best

known) optimal solution is done in Exler et al. [17] by the following criteria:

|f(x, y)− f(x∗, y∗)|
|f(x∗, y∗)|

< ε, (5.2)

where (x, y) is the (feasible) solution obtained by the algorithm, (x∗, y∗) is the best known

solution and ε is some tolerance. Wether a solution is feasible or not is dependent on the

L∞-norm of the vector of constraint violations. A solution (x, y) is considered feasible, if:

‖g(x, y)‖∞ < acc, (5.3)

where acc is some accuracy. In Exler et al. [17] a tolerance of ε = 0.01 and an accuracy

of acc = 0.0001 were applied for the numerical results.

All SQP-based algorithms were started from a priori defined initial points given for every

problem in the source code of the library by Schittkowski [40]. In Exler et al. [17] there

is no investigation on the impact of these pre-defined initial points on the performance of

the eight algorithms. In other words, it is not known, if and how much the results would

change, in case other (e.g. random initial points) would have been used.

5.2.2 MIDACO Performance on 100 MINLP Benchmarks

Here numerical results obtained by MIDACO 3.0 for the set of 100 MINLP problems

are presented. The same criteria for global (or best known) solutions and feasibility

(illustrated in equation (5.2) and (5.3)) like in Exler et al. [17] is applied. For the test

runs of MIDACO a tolerance of ε = 0.01 and an accuracy of acc = 0.0001 was used,

79

which are identical to those tolerances as used in Exler et al. [17]. In the following,

the term global optimal solution will always refer to the best known solution provided in

Schittkowski [40].

A critical aspect of MIDACO (and most stochastic algorithms) is the stopping criteria.

For the results in this section, there are two stopping criteria applied. Firstly, a maximal

cpu time budget of 300 seconds (5 minutes) for every test problem and secondly the

success criteria for global optimality presented in equation (5.2). This means, in both

cases MIDACO is stopped from outside, it does not stop by itself. In contrary to this,

the SQP-based algorithms presented in Exler et al. [17] stop by themselves and the

optimality criteria is checked afterwards. An investigation of the internal stopping criteria

of MIDACO, named Autostop, can be found in [47].

As initial point random points are used that are stochastically generated for every in-

dividual test run. Hence MIDACO does not make use of the pre-defined initial points

provided in the library. As MIDACO is of stochastic nature, the full set of 100 prob-

lems is evaluated 10 times using a different random seed (from 0 to 9) for the internal

pseudo random number generator. This procedure ensures objective conclusions on the

robustness of the software regarding the pseudo random number generator.

Table 5.5 lists the results obtained by MIDACO by 10 runs with different Seed on the

full set of 100 problems. Besides the number of global optimal and feasible solutions,

the average number of function evaluation and time and the total required cpu time is

reported. The abbreviations for Table 5.5 are as follows:

80

Seed - Initial seed for MIDACO’s internal pseudo random number generator

Optimal - Number of global optimal solutions obtained out of 100 problems

Feasible - Number of feasible solutions obtained out of 100 problems

Evalmean - Average number of function evaluation over global optimal solved problems

Timemean - Average cpu time (seconds) over global optimal solved problems

Table 5.5: MIDACO Performance on 100 MINLP Benchmarks
Seed Optimal Feasible Evalmean Timemean

0 96 99 1,656,979 4.54

1 96 99 3,223,015 9.01

2 96 98 1,673,873 4.20

3 97 98 2,235,463 6.53

4 96 98 2,054,099 6.08

5 97 99 1,485,525 4.82

6 95 99 1,641,648 4.07

7 97 99 1,724,627 5.90

8 95 99 1,120,204 2.77

9 96 98 2,313,829 7.93

The results in Table 5.5 show a very robust MIDACO performance always obtaining

between 95 and 97 global optimal solutions and between 98 and 99 feasible solutions.

The average amount of function evaluation ranges between 1.5 and 3.2 million, while the

average cpu time varies between 2.77 to 9.01 seconds. Note, that the MIDACO software

is able to process millions of iterates within seconds on a standard computer (not taking

into account function evaluation time, but only the internal MIDACO time). Regarding

the random seed, the best run was obtained for Seed = 5, individual results for this test

run can be found in Appendix B.

Comparing the results of Table 5.5 with the ones obtained by the SQP-based algorithms

presented in Table 5.4, MIDACO robustly achieved a significantly higher percentage of

global optimal solutions than any of the SQP-based algorithms (which range between 69

and 92 global optimal solutions). In favor of MIDACO, this conclusion must further take

81

into account, that the SQP-based algorithms were started only one time from pre-defined

initial points. MIDACO instead was not making use of the pre-defined initial points and

was tested 10 times on the full library.

Regarding the number of function evaluation, MIDACO performs significantly more eval-

uation than the SQP-based algorithms (which widely range between 241 and 218,881

evaluation). This results is however expected, as stochastic algorithms like MIDACO are

known to require much more evaluation than deterministic ones like SQP. In terms of

cpu-time performance MIDACO is at least competitive with the SQP-based algorithms

(which widely range between 0.11 and 30.91 seconds). In favor of MIDACO, one has to

further take into account, that the mean values for evaluation and cpu-time are calculated

over 95 to 97 global solutions, while those of the SQP-based algorithms are calculated

only over 69 to 92 global solutions.

5.3 MIDACO Performance Comparison with BON-

MIN and COUENNE

In addition to the comparison of MIDACO to the set of SQP based MINLP solvers given in

Subsection 5.2.1, a further comparison to the established MINLP solvers BONMIN [6] and

COUENNE [4] is given here. The solver BONMIN implements a variety of deterministic

algorithms (in esp. Branch & Bound and Outer Approximation) and ensures global

optimal solutions for convex problems, for non-convex MINLP problems it is a heuristic

like MIDACO. The solver COUENNE is a price wining software (COIN-OR Cup 2010,

see http://meetings2.informs.org/Austin2010/blog/?p=88), based on a Branch &

Bound algorithm and aims at finding global optimal solutions even for non-convex MINLP

82

http://meetings2.informs.org/Austin2010/blog/?p=88

problems. Both solvers are provided by the Computational Infrastructure for Operations

Research (COIN-OR) and are distributed within the GAMS [21] environment. These

solvers have been used here out of the box, without any attempt to specify or tune their

parameters or settings. A subset of 66 instances from the 100 MINLP benchmarks (see

Table 38) is considered for evaluating purposes. This subset represent those problems from

the 100 MINLP benchmarks, that are originally taken from the GAMS MINLPlib [22]

benchmark library. A cpu time budget of 300 seconds has been applied to all solvers for

each instance as maximal time limit. In case of MIDACO the automatic stopping criteria

(see Section 4.2) was activated. A value of 50 was chosen for the Autostop parameter,

which seems to provide a good balance between solution quality and cpu-runtime. For the

deterministic solvers BONMIN and COUENNE only one test run for every problem was

performed, using the pre-defined starting point from the GAMS MINLPlib. As MIDACO

is a stochastic solver, 10 test runs were performed for every problem instance, using a

different random seed. MIDACO did not make use of pre-defined starting points and uses

the lower bounds as starting point on all instances instead.

Table 5.6 shows the comparison of the three tested solvers regarding the number of global

optimal solutions (Optimal), the number of feasible solutions (Feasible) and the average

and total cpu-time required. In case of MIDACO the variance of global optimal and

feasible solutions, based on the different random seeds, is reported. The individual results

by all three solvers on all 66 problems corresponding to Table 5.6 can be found in the

Appendix 6.6.5, Table 43. Function evaluation are not reported in Table 5.6, as those

information is not consistently reported within the GAMS environment for BONMIN

and COUENNE. In case of MIDACO, Table 5.5 already gives evidence on the required

function evaluation. All three solvers were tested on the same computer using an Intel(R)

Core(TM) i7 Q820 CPU with 1.73GHz clock rate and 4GB RAM.

83

Table 5.6: BONMIN, COUENNE and MIDACO on 66 MINLP benchmarks
Solver Optimal Feasible T imeaver Timetotal
BONMIN 49 64 17.99 1187.62

COUENNE 48 64 40.36 2664.31

MIDACO 51 ∼ 62 64 ∼ 65 31.41 2072.73

Based on the results in Table 5.6 it can be concluded, that MIDACO is fully competitive

to the solvers BONMIN and COUENNE regarding solution quality and cpu-runtime.

MIDACO outperforms both regarding the number of global optimal solutions found. In

terms of cpu-runtime, MIDACO is able to outperform COUENNE, but is slower than

BONMIN. Interpreting the results in Table 5.6, one has to take further into account, that

testing BONMIN and COUENNE within GAMS implies a significant advantage for those

solvers, as GAMS provides gradients to those algorithms for free (in terms of cpu-time). A

further observation regarding the global optimality convergence proof hold by COUENNE

should be mentioned here. COUENNE reported falsely in 10 out of 66 problems (this is

15.2%) a local solution as global optimal. This is assumably due to numerical difficulties

and software bugs (e.g. scaling problems).

5.4 MIDACO Performance using Parallelization

As seen in Section 5.2.2 the MIDACO software is able to process millions of iterates within

seconds (Note: This statement refers only to the internal calculation time of MIDACO

and does not take into account the time for the problem function evaluation). Therefore

MIDACO can achieve a very competitive cpu-time performance with a high chance of

global optimality, if problem function evaluation are computationally inexpensive.

Many real world applications however, are computationally expensive. Thus, performing

84

millions of function evaluation in serial is not practicable. Performing them in parallel

however, can be done in a reasonable time, if an adequate cpu architecture is available.

The parallelization option offered by MIDACO is based on this idea. By (massively)

parallelizing the problem function evaluation, even cpu time expensive problems become

solvable by MIDACO in a reasonable time.

In the following, a series of experiments is performed, investigating the impact of the

parallelization factor L (see Section 4.1) on the MIDACO performance on the same set

of 100 MINLP problems known from above. A fixed budget of evaluation blocks is con-

sidered as budget for MIDACO. A block denotes here the amount of L iterates that are

evaluated and passed to MIDACO within one reverse communication loop (see Figure

4.1). Regarding the computational time performance, the amount of blocks processed by

MIDACO is directly comparable to the amount of serial processed function evaluation by

an algorithm. For the experiment presented here, the problem function evaluation of L

iterates given in every block were executed in serial, rather than actually parallelized. As

due to the reverse communication concept the function evaluation are completely inde-

pendent of the MIDACO code, this makes absolutely no difference for MIDACO. Hence

those experiments only simulate the impact of parallelization on the MIDACO perfor-

mance. Note that nevertheless, the conclusions on the impact of an actual parallelization

are absolute accurate and valid.

A series of test runs considering a maximal budget of 100,000 evaluation blocks is per-

formed. This budgets is chosen to express the scenario of a cpu time expensive application,

where not more than 100,000 (serial processed) function evaluation can be executed in a

reasonable time. The parallelization factor L will be increased stepwise from 1 to 50,000.

As done in Section 5.2.2, the success criteria (5.2) is applied to stop MIDACO, in case it

reveals the global optimal solution before performing the maximal budget of blocks. Table

85

5.7 lists the number of global optimal and feasible solutions regarding the corresponding

parallelization factor L. The average number of blocks to be evaluated and processed by

MIDACO is given in addition. The abbreviations for Table 5.7 are as follows:

L - Parallelization factor for MIDACO (see Section 4.1)

Optimal - Number of global optimal solutions obtained out of 100 problems

Feasible - Number of feasible solutions obtained out of 100 problems

Blockmean - Average number of evaluation blocks over global optimal solved problems

Table 5.7: Impact of L given a maximal budget of 100,000 blocks
L Optimal Feasible Blockmean
1 61 90 7,736

5 69 92 2,118

10 75 91 4,394

50 80 95 3,429

100 80 98 2,406

500 82 98 1,161

1,000 83 98 2,458

5,000 84 98 2,203

10,000 86 98 2,100

50,000 89 98 1,916

Note, that a different parallelization factor L implies a different stochastic behavior of

MIDACO. This explains the non-monotonic variations in average number of evaluation

blocks.

The results presented in Table 5.7 demonstrate the significant impact of the parallelization

factor L on the MIDACO performance. Like expected, the results corresponding to a

parallelization factor L = 1 (which means no parallelization at all) are very weak with only

61 global optimal solved problems and an average of 7,736 evaluation blocks. However,

assuming a massive parallelization factor of L = 50,000, the number of global optimal

solved problems can be increased up to 89 with a corresponding average number of 1,916

86

evaluation blocks. As the number of blocks directly corresponds with the number of serial

processed function evaluation, it can be concluded that MIDACO can even be competitive

with some of the SQP-based algorithms (see Table 5.4) in terms of function evaluation,

if (massive) parallelization capabilities are available.

87

Chapter 6

Numerical Results on Real World

Applications

In this chapter numerical results obtained by MIDACO (see Chapter 4) on real world

applications are presented. In compliance with the topic of this thesis, the focus here is

only on (aero)space applications. Nevertheless, the usage of MIDACO is by no means

limited to this area and several applications on real world applications from other fields

have been performed and published (see [43], [44] and [28] for example). Table 6.1 gives

an overview on real world applications solved by MIDACO, regarding their academic area

and the solution quality achieved by MIDACO. Table 6.1 uses the following abbreviations:

Area - Industrial or academic area of the corresponding application

Name - Name of the application used in the Reference

Solution - Quality of the solution obtained by MIDACO

n - Number of decision variables of the application

Reference - Literature or (web-) reference for the application

Section - Section in this chapter, that refers to this application

n.a. - not available

88

Table 6.1: Real world applications solved by MIDACO
Area Name Solution n Reference Section

Aerospace F8-Aircraft best 6 [45] 6.1

(Aero)Space Heat Shield *new* best 31 [43] 6.2

Space Satellite first solution 5 [49] 6.3

Space ESA/ACT GTOP (*new*) best 6∼26 [46] 6.4

Space Space Mission best 21 n.a. 6.5

Space Launcher *new* best 128 n.a. 6.6

Chem. Eng. TEP best 43 [44] n.a.

Chem. Eng. WWT.COST.1 best 4 [44] n.a.

Chem. Eng. WWT.COST.2 best 8 [44] n.a.

Chem. Eng. WWT.COST.3 best 13 [44] n.a.

Chem. Eng. TP4 *new* best 52 [45] n.a.

Chem. Eng. TP5 *new* best 113 [45] n.a.

Robotics Camera first solution 45 [28] n.a.

The following sections illustrate all the (aero)space applications listed in Table 6.1 in

detail. While the MIDACO usage on most of these applications have been already pub-

lished in the open literature, the Space Mission (Section 6.5) and Launcher (Section 6.6)

application here are the latest ones and their separate publication is currently in prepa-

ration. Note that the numerical results presented here for the F8-Aircraft (Section 6.1)

application differ from the already published results in [45], as significant improvements

could be achieved meanwhile on this problem. In case of the F8-Aircraft (Section 6.1) and

Launcher (Section 6.6), the application was solved by a hybrid combination of MIDACO

and a SQP algorithm, were the later was used for refinement purposes.

In total, the results summarized in Table 6.1 demonstrate well the real-world capabilities

of the MIDACO software (which is based on the theoretical algorithms developed in this

thesis). In particular MIDACO is able to obtain the best known or even new best known

solutions in any of the listed applications.

89

Note that the implementations of the applications discussed in Section 6.1, 6.5 and 6.6

can be downloaded at http://www.midaco-solver.com/applications.html.

6.1 Optimal Control of an F8-Aircraft Manoeuvre

In this subsection the optimal control of an aircraft manoeuvre is discussed. This ap-

plication is known as the F-8 aircraft control problem introduced by Kaya and Noakes

[32]. Here we refer to a formulation of this application that is available from mintOC [39]

at http://mintoc.de/index.php/F-8_aircraft. The concrete implementation used to

generate the following results can be downloaded at http://www.midaco-solver.com/

applications.html. Several reference solutions to this application can be found at the

mintOC [39] webpage. Among those are solutions obtained by well known solvers such

as BONMIN, KNITRO and IPOPT. Note, that none of the above mentioned solvers is

capable to solve this application to its current best known solution, due to the information

given on mintOC [39] and that those solvers might have considered different reformula-

tions of the problem (e.g. NLP reformulations). Hence we consider this as a challenging

application with good possibilities to compare the solution quality obtained by the here

considered approach with concurrent ones.

The objective of this application is the minimization of the final time of a simplified aircraft

manoeuvre. The manoeuvre is performed using a bang-bang control approach, thus the

control can only switch between two values. Here this application is formulated as a NLP

optimal control problem, applying 6 different stages, whereas every stage represents a

switch in the bang-bang control. This implies 6 optimization variables, which correspond

to the starting time points of the stages, defining the switching time point of the bang

bang control. This approach coincides with the representation of the reference solutions

90

http://www.midaco-solver.com/applications.html
http://mintoc.de/index.php/F-8_aircraft
http://www.midaco-solver.com/applications.html
http://www.midaco-solver.com/applications.html

given at mintOC [39], where the optimal control stages are referred to as arcs. Besides

the 6 optimization variables, 3 equality constraints must be fulfilled at the end of the

manoeuvre, representing the correct final state of the aircraft. This is in especially that

all three differential states must be zero at the final time of the manoeuvre.

Equation 6.1 expresses the F8 aircraft manoeuvre regarding the three time depended

considered differential states ẋ0, ẋ1 and ẋ2. The initial state x(0) and the final state

x(tfinal) are also stated, whereas the final state implies the above mentioned three equality

constraints.

Minimize tfinal,

s.t.: ẋ0 = − 0.877x0 + x2 − 0.088x0x2 + 0.47x2
0 − 0.019x2

1 − x2
0x2 + 3.846x3

0,

− (0.215ξ − 0.28x2
0 − 0.47x0ξ

2 − 0.63ξ3)w,

− (−0.215ξ + 0.28x2
0ξ − 0.47x0ξ

2 + 0.063ξ3)(1− w),

ẋ1 = x2,

ẋ2 = − 4.208x0 − 0.396x2 − 0.47x2
0 − 3.564x3

0,

− (20.967ξ − 6.265x2
0ξ − 46x0ξ

2 − 61.4ξ3)w,

− (−20.967ξ + 6.265x2
0ξ − 46x0ξ

2 + 61.4ξ3)(1− w),

x(0) = (0.4655, 0, 0)T ,

x(tfinal) = (0, 0, 0)T .

(6.1)

The bang-bang control w ∈ {0, 1} is defined in Equation 6.2. The bang-bang structure

is here defined by the time points t1, t2, t3, t4, t5 and tfinal, marking the beginning or

end of a different stage (also called arc). These six time points are the decision variables,

91

whereas the last one (tfinal) also expresses the objective function.

w(t) =



1 , if 0 6 t < t1,

0 , if t1 6 t < t2,

1 , if t2 6 t < t3,

0 , if t3 6 t < t4,

1 , if t4 6 t < t5,

0 , if t5 6 t 6 tfinal.

(6.2)

The F8-Aircraft application is solved by a combination of MIDACO (see Chapter 4) and

a SQP algorithm (SQP-Filtertoolbox by Prof. Gerdts). MIDACO is first applied on

the optimal control problem using the lower bounds (zero) as starting point, whereas

the SQP algorithm is then afterwards called, applying the MIDACO solution as starting

point. Two different setups for MIDACO are assumed: i) using default parameters and ii)

using tuned parameters regarding the algorithm (in esp. Qstart and Oracle, see Section

4.2). For the default setup, MIDACO is given a maximal time budget of 600 seconds,

or stops before this limit by its own automatic stopping criteria (in esp. Autostop = 5,

see Section 4.2). For the tuned setup, MIDACO is given a maximal time budget of 60

seconds, a Qstart parameter of 100 (in order to focus the search process)and an Oracle

parameter of 4.0 (which is based in the best known solution corresponding to an objective

function value of 3.78, see Table 6.4). MIDACO assumes a moderate accuracy of 10−2

for the constraint violation, whereas the SQP algorithm assumes a higher accuracy of

10−6. The idea behind this approach is that MIDACO delivers a reasonable good starting

point for the SQP algorithm, which then returns a highly accurate solution. Table 6.2

and Table 6.3 shows the numerical results by this approach for 10 test runs (using a

different random seed each time) by MIDACO using default parameters and tuned ones

respectively. All runs were performed on a computer with an Intel(R) Core(TM) i7 Q820

CPU with 1.73GHz clock rate and 4GB RAM.

92

Table 6.2: Results of 10 test runs on F8-Aircraft using MIDACO (default) and SQP

MIDACO SQP

Test Run Objective Evaluation Time Objective Evaluation Time

1 4.017191 575038 127.34 3.780211 106 0.04

2 3.753558 467211 126.49 3.780212 184 0.09

3 6.830677 313259 82.77 6.827373 221 0.13

4 3.740785 904630 262.50 3.780211 210 0.09

5 6.873262 1145671 304.39 6.827373 299 0.18

6 3.735261 422985 101.00 3.780211 73 0.03

7 6.860254 2097135 568.07 3.780211 711 0.44

8 3.766495 329588 89.35 3.780211 313 0.14

9 6.288805 1239587 600.00 6.322984 104 0.06

10 4.573276 667050 227.74 3.780211 3274 1.95

Average: 5.043956 820663 248.96 4.643921 549 0.32

Table 6.3: Results of 10 test runs on F8-Aircraft using MIDACO (tuned) and SQP

MIDACO SQP

Test Run Objective Evaluation Time Objective Evaluation Time

1 3.775308 107930 60.00 3.780211 203 0.13

2 3.781723 133881 60.00 3.780211 170 0.07

3 3.735079 109770 60.00 3.780211 63 0.04

4 3.918386 104279 60.00 3.780211 206 0.14

5 4.092283 102022 60.00 3.780211 207 0.14

6 4.020482 107319 60.00 3.780211 92 0.06

7 3.733805 114478 60.00 3.780211 63 0.04

8 3.797692 100179 60.00 3.780211 157 0.11

9 4.048429 101560 60.00 3.780212 316 0.20

10 3.786220 121182 60.00 3.780211 108 0.08

Average: 3.868941 110260 60.00 3.780211 158 0.10

Table 6.2 displays the best solution found by the combination of MIDACO and SQP from

Table 6.4 and compares it with the best known solution (found by Sager) from mintOC

[39].

93

Table 6.4: F-8 Aircaft control problem solutions
Arc w(t) Sager MIDACO + SQP

1 1 1.13492 1.1368996475

2 0 0.34703 0.3457308852

3 1 1.60721 1.6071985027

4 0 0.69169 0.6048388008

5 1 0 0.0000000000

6 0 0 0.0855435144

Infeasibility - 2.21723e-07 0.4896e-13

Objective - 3.78086 3.780211

Figure 6.1 displays the three differential states of the aircraft model over time, corre-

sponding to the best solution presented in Table 6.4.

Figure 6.1: Differential states corresponding to best known solution

From the results from Table 6.2 it can be seen, that MIDACO (using default parameters)

delivers four out of ten times a solution close to the best known one. In two cases MIDACO

94

delivers a moderate solution quality of an objective function value between 4.01 and 4.57,

while in the remaining four cases a worse objective function value between 6.28 and 6.87

is revealed. The SQP algorithm is able to refine the MIDACO solutions to the best known

one (corresponding to an objective function value of 3.78) in seven out of ten cases to a

high accuracy in less than a second.

From the results from Table 6.3 it can be seen, that MIDACO (using tuned parameters)

delivers in all cases good solutions (in especially those with an objective function value

smaller or equal to the predefined Oracle = 4.0). Note that the cpu time budget for

MIDACO in Table 6.3 is only 60 instead of 600 seconds like in Table 6.2! The SQP

algorithm is able to refine the MIDACO solutions to the best known one in all cases.

Comparing the MIDACO results from Table 6.2 and Table 6.3 demonstrate the possible

performance gain in tuning the algorithmic parameters and the effectiveness of the oracle

penalty method (see Chapter 3).

In total it can be concluded, that the proposed hybrid approach here is well capable to

robustly solve this application in a reasonable time with high accuracy.

6.2 Thermal Insulation System Application (Heat Shield

Problem)

In this subsection the optimization of a load-bearing thermal insulation system is de-

scribed. A thermal insulation system is characterized by hot and cold surfaces with a

series of heat intercepts and insulators between them. It is assumed that the insulators

act as a mechanical support, a system with such a property is called load-bearing. These

kind of systems find its application for example in space borne magnets or the heat shield

95

thermal protection system of space crafts. Here a specific model (’Heat Shield Problem

Files’) obtained from Abramson [2] is considered. The aim of the optimization is to min-

imize the required power (P), which is needed to maintain a stable temperature for the

surfaces and intercepts used within the system. Details on the thermal insulation system

can be found in Abramson [1].

While in Abramson [1] the optimization problem was stated as a mixed variable problem

(MVP) with a variable number of intercepts, here we have selected a MINLP formulation

with a fixed number of intercepts. Based on the solution provided in Abramson [2] the

number of intersections was fixed to eleven. Consequently our MINLP formulation consists

of 20 continuous and 11 integer decision variables, plus 2 nonlinear inequality constraints.

Regarding the lower and upper bounds for the continuous variables, the solution values

provided in Abramson [2] were used once again as a reference. We assumed bounds of

50 percent around those values for the real variables. Regarding the integer variables,

every integer represents an insulator material used in an intercept, and 7 different types

of materials were considered in Abramson [1], so these integer variables have a range from

1 to 7, with the materials being nylon, teflon, epoxy normal, epoxy plane, aluminum,

carbon-steel and steel.

To illustrate the multimodality, and therefore the complexity of this problem, a frequency

histogram for the feasible solutions found by a multistart execution of the local solver

MISQP [18] with 100 random initial points is shown in Figure 6.2.1 (only solutions with

an objective function value lower than 1000 are displayed). Out of this 100 runs of

MISQP, 54 did not converge to a feasible solution. Of the 46 runs that converged to a

feasible solution, the best objective function value found was 141.35 (P). In total, the

multistart procedure required 58325 objective function evaluations. Note, that for the

sake of comparison an evaluation limited MISQP multistart with random initial points

96

is considered beneath in addition to this multistart with a fixed number of 100 MISQP

executions.

Figure 6.2: Frequency histogram of feasible solutions for the ’Heat Shield Problem’

For the optimization of this application, the software code ACOmi is considered here.

ACOmi is a Matlab implementation of the extended ACO algorithm described in Chapter

2 in combination with the oracle penalty method presented in Chapter 3 and offers the

hybridization with the local solver MISQP. Details on the ACOmi software can be found

in [43]. ACOmi is considered the first beta version of the MIDACO software, described

in Chapter 4. The ACOmi solver is considered here in three different setups regarding a

hybridization with the local solver MISQP. Table 6.5 lists the different setups with details

on the hybridization.

Table 6.5: ACOmi setups regarding local solver MISQP
Setup Description of the hybridization level

ACOmi1 No hybridization with MISQP

ACOmi2 MISQP is frequently called within ACOmi after every ACO generation

ACOmi3 MISQP is called only once, using the ACOmi solution as starting point

97

The performance of ACOmi is compared to MITS [16], which is an implementation of a

Tabu Search [25] algorithm for MINLP using MISQP as a local solver, and the evaluation

limited multistart of MISQP with random initial points. A maximal budget of 10000

function evaluation was set for every solver and 30 test runs have been performed. A

precision of 10−4 regarding the l1 Norm over all constraint violations and the objective

function value was claimed.

In addition to our own obtained results by MITS, the MISQP multistart and ACOmi,

two solutions presented in Abramson [1] were taken as references: the NOMADm solution

obtained by Abramson [1], which is identical to the above mentioned reference solution

provided by Abramson [2], and another solution by Kokkolaras et al. [33]. While in

Abramson [1] only normalized values of the objective function were reported, we have

focused on the original (not normalized) values corresponding to the power (P). The

normalization is done by a multiplication of the power with the system-load (L) and a

division by a cross-sectional area (A). Using these normalized values, the NOMADm solu-

tion was 23.77 (PL
A

), and the Kokkolaras one 25.29 (PL
A

). Using the ’Heat Shield Problem

Files’ provided by Abramson [2] we obtained a not normalized NOMADm solution value

of 106.35 (P), which is consistent with the convergence curve performance of the pure

power (P) presented in Abramson [1].

The results obtained by MITS, the evaluation limited MISQP multistart and the ACOmi

setups are given in Table 6.6, where the best (fbest), worst (fworst) and mean (fmean)

(feasible) objective function value are reported. All 30 test runs of all solvers converged

to feasible solutions. In addition the mean number of function evaluation (evalmean) and

the corresponding cpu-time (timemean) in seconds is also reported for all solvers.

98

Table 6.6: Results for the Heatshield problem
solver feasible fbest fworst fmean evalmean timemean
ACOmi1 30 105.86 110.01 107 10051 206.03

ACOmi2 30 105.79 163.54 112.9 10370 331.54

ACOmi3 30 105.82 121.35 107.74 10375 216.61

MISQP 30 154.6 9427 581.91 10202 281.89

MITS 30 111.04 150.46 124.71 11037 518.52

In addition to Table 6.6, Table 6.7 gives detailed information on the best decision vectors

(x∗, y∗) obtained by MITS and ACOmi (best solution obtained by setup ACOmi2). Also the

above mentioned NOMADm solution and the solution values (original and normalized)

are given.

99

Table 6.7: Best solution (x∗, y∗) by NOMADm, MITS and ACOmi

solution information (x∗, y∗)NOMADm (x∗, y∗)MITS (x∗, y∗)ACOmi2

continuous variables x∗:

1 0.625 0.843 0.321

2 8.125 6.670 7.658

3 7.968 9.652 8.639

4 7.812 11.652 7.153

5 12.344 6.172 13.781

6 26.094 15.854 25.698

7 8.125 12.187 8.237

8 5.312 7.968 5.780

9 5.000 7.500 5.087

10 5.625 7.373 6.613

11 4.250 4.201 4.200

12 7.737 6.401 7.294

13 12.369 11.788 12.089

14 18.094 20.795 17.177

15 29.912 25.722 30.185

16 71.094 47.717 71.257

17 105.940 71.000 107.266

18 135.470 114.119 139.299

19 165.940 165.459 171.534

20 202.030 206.272 214.485

categorical variables y∗:

1 Epoxy normal Carbon steel Nylon

2 Epoxy normal Epoxy normal Epoxy normal

3 Epoxy normal Epoxy normal Epoxy normal

4 Epoxy normal Epoxy normal Epoxy normal

5 Epoxy normal Epoxy normal Epoxy normal

6 Epoxy normal Epoxy normal Epoxy normal

7 Epoxy normal Epoxy normal Epoxy normal

8 Epoxy normal Epoxy normal Epoxy normal

9 Epoxy normal Epoxy normal Epoxy normal

10 Epoxy normal Epoxy normal Epoxy normal

11 Epoxy normal Epoxy normal Epoxy normal

solution value:

P (original) 106.355 111.043 105.787
PL
A

(normalized) 23.768 24.815 23.641

100

The convergence curves of all 30 test runs by MITS and the ACOmi1 setup are given in

Figure 6.3. Note that the plots uses double logarithmic scale.

Figure 6.3: Convergence curves of MISQP and ACOmi1 for the Heatschield problem

Analyzing the results of ACOmi on this application and comparing them with those of

MITS and the MISQP multistart, ACOmi was clearly outperforming both. In addition the

best results by all three ACOmi setups are slightly better than the best solution found by

NOMADm (see Abramson [1]). It is significant, that the mean objective function value

of around 107 obtained by ACOmi1 and ACOmi3 is much better than the one obtained by

ACOmi2, which is the ACOmi setup calling the local solver after every generation. As the

MISQP multistart achieved only a pure best objective function value of 154.6 and a much

worse mean value of 581.91, the use of this local solver for this application does not seem

promising. This is also assumed as an explanation why MITS performed significantly

worse than ACOmi on this application. It seems that the performance of MITS is heavily

dependent on the local solver MISQP.

101

6.3 Satellite Constellation Optimization

This subsection describes the application of the MIDACO software (see Chapter 4) on a

space based situational awareness application. Note, that this application was undertaken

independently from the author of this thesis by Takano and Marchand [49] at the De-

partment of Aerospace Engineering of the University of Texas at Austin (USA) in 2011.

However, as this application fits the topic of this thesis very well, it should be briefly

presented here based on the description given in Takano and Marchand [49].

This application considers the optimization of coverage capabilities by satellites elliptical

orbiting around the earth. Two distinct orbits are considered, employing a variable num-

ber of satellites. The objective function is to minimize the total number of satellites in

this two orbit system while fulfilling a continuous coverage constraint. The application

is imposed as a MINLP problem, considering two integer variables representing the num-

ber of satellites on each orbit. Furthermore, the semi-major axis and eccentricity of the

orbits is considered as continuous optimization variables. Table 6.8 shows the starting

point and solution obtained by MIDACO after 300 seconds (corresponding to 682 function

evaluation).

Table 6.8: Starting Point and MIDACO Solution
Variable Description Starting Point MIDACO Solution

a semi-major axis (both orbits) 10000 km 8588 km

e eccentricity (both orbits) 0.25 0

n1 number of satellites on orbit 1 3 0

n2 number of satellites on orbit 2 3 6

Objective Function Value: infeasible 6

MIDACO did reveal a first feasible solution corresponding to an objective function value

102

of 12 after 15 function evaluation and converged to the presented solution with an ob-

jective function value of 6 after 98 function evaluation. Based on the information given

in Takano and Marchand [49], the solution revealed by MIDACO is the expected one for

this application.

6.4 ESA/ACT: Global Trajectory Optimization Prob-

lems

Here a set of (constrained) continuous optimization benchmark problems provided by

the Advanced Concept Team (ACT) of the European Space Agency (ESA) is considered.

This benchmark set is known as the GTOP database [15] which defines some global

optimization spacecraft trajectory problems for interplanetary space missions and lists

their best putative solutions, submitted by various international research groups. For the

ESA NPI Day 2010 [46] conference, the performance of MIDACO (at that time in beta

version 0.3) was evaluated on this set of test problems.

These benchmark problems are known to be extremely difficult and the submission time

between different solutions to these problems range between 6 to 34 months (see Table

6.9). Except the Messenger Full problem, MIDACO was applied to every problem with

only one test run by default parameters. However, there were no maximum time or

evaluation budget assigned to MIDACO, thus it was stopped only, in case the best known

solution was reached or no more progress were made upon the current solution (in case of

the Messenger problems). Table 6.9 reports the solution quality obtained by MIDACO

with the corresponding required cpu runtime and the time between the first and last

solution submission on the ESA/ACT website [15] for every problem of the test set. Note

103

that those times can not directly be compared, but the time between the first and last

submission at least gives an indication on the difficulty of the problem. The calculations

were performed on a PC with a 1.66 GHz clock rate and 1 GB RAM working memory.

Table 6.9: MIDACO 0.3 performance on ESA/ACT GTOP database problems

Time between first

Problem n MIDACO solution Required Time and last submission

Cassini1 6 Best 39 Minutes 6 Month

GTOC1 8 Best* (new) 35 Hours 13 Month

Messenger Full 26 3rd Best* separated runs 34 Month

Messenger 18 4th Best 13 Hours 11 Month

Cassini2 22 Best* (new) 50 Days 14 Month

Rosetta 22 Best 6 Days 6 Month

Sagas 12 Best 12 Hours only one submission

* MIDACO solution is published on the ESA/ACT website [15]

As it can be seen from Table 6.9, MIDACO is able to reach the best known solution in

5 out of 7 cases. In case of the two Messenger problems MIDACO did not succeed in

reaching the best known solution, but still obtains competitive solutions. The required

computation time strongly varies between 39 minutes (Cassini1) and 50 days (Cassini2),

which was an exceptional long case were the convergence to the desired solution precision

required the vast majority of the cpu time. In case of GTOC1 and Cassini2 MIDACO

did reveal new best known solutions, which remain the best known ones on the ESA/ACT

website [15] since May 2009.

6.5 Interplanetary Space Mission Design

The design of an interplanetary space mission from Earth to Jupiter is considered here.

This application is based on the real world mission Galileo launched by NASA in Octo-

104

ber 1989 (see http://solarsystem.nasa.gov/galileo/). The Galileo mission was the

first one to implement gravity assist maneuvers, where the direction and velocity of the

spacecraft is changed due to the gravitational force of a planet. The Galileo probe per-

formed three flybys in total (one at Venus and two at Earth) and several minor flybys

at asteroids on its way to Jupiter. Here a general interplanetary space mission model

is assumed, considering the flyby planets as discrete optimization variables. The model

setup is so general, that it will allow several possible feasible trajectories from Earth to

Jupiter, including the Galileo type of mission. Together with the continuous optimization

parameters (e.g. for thrusting and flyby altitudes), the mission design forms a challeng-

ing MINLP problem. To the best knowledge of the author, this is the first time, that a

interplanetary space trajectory optimization problem is considered as MINLP.

6.5.1 Space Mission Layout

The space mission is implemented as an optimal control problem containing several stages,

corresponding to different arcs of the mission. Here an arc describes the time between

two major events of the mission, such as flyby or thrusting maneuvers. The mission is

characterized by three flyby maneuvers, which is based on the real Galileo mission. For

thrusting it assumes one deep space maneuver (DSM), which is a thrusting maneuver

that happens in space where the influence of any planet can be neglected. Further an

escape (from Earth) and a capture (for Jupiter) thrusting maneuver are supposed. Further

the flyby altitudes are assumed as continuous optimization variables as well as the time

duration of each arc. Figure 6.4 illustrates the mission layout regarding the five arcs and

major events.

105

http://solarsystem.nasa.gov/galileo/

Figure 6.4: MGA-DSM space mission layout regarding arcs and major events

In total, the space mission model consists of 18 continuous optimization variables x and

three integer variables y, representing the planet candidates for every flyby in the mission

layout (see Fig. 6.4). All nine planets of the solar system are considered as possible flyby

candidate. Thus the integer complexity of this MINLP formulation is 93 = 729, whereas

only the first four planets of the inner solar system seem to be reasonable flyby candidates.

Table 6.10 lists the nine planets with their corresponding integer identification number.

Table 6.10: Planet numeration
Number Planet

1 Mercury

2 Venus

3 Earth

4 Mars

5 Jupiter

6 Saturn

7 Uranus

8 Neptune

9 Pluto

Table 6.11 lists all optimization variables of the mission with a brief description and

assumed lower and upper bounds. Note, that the three thrusting maneuvers are controlled

in three cartesian dimensions (X, Y, Z). For gravity assists a minimal and maximal flyby

altitude is assumed, which is based on the concrete flyby planet radius. The minimal

flyby altitude Altmin is defined as (101)% of the planet radius, where the 1% simulates

106

the planet atmosphere. Only for the Earth, an atmosphere of 300km (instead of 63.78km,

which would be 1% of the Earth radius) is assumed in particular, to take into account

satellites orbiting the Earth. The maximal flyby altitude Altmax is defined as Altmax =

100 ·Altmin, which also allows to model flybys of very little impact on the trajectory. The

launch date of the space mission is considered a further continuous optimization variable,

where a launch time window of two years (from 1 Jan. 1989 to 31 Dec. 1990) is assumed.

Table 6.11: Optimization variables x (continuous) and y (integer) with bounds

Variable Description Lower Bound Upper Bound

continuous

x1 Launch Date 0 (01 Jan. 1989) 730 (31 Dec. 1990)

x2 Duration of Arc 1 0 (days) 200 (days)

x3 Duration of Arc 2 0 (days) 400 (days)

x4 Duration of Arc 3 0 (days) 800 (days)

x5 Duration of Arc 4 0 (days) 100 (days)

x6 Duration of Arc 5 0 (days) 1200 (days)

x7 Thrust Escape (X direction) -6000.0 (m/sec) 6000.0 (m/sec)

x8 Thrust Escape (Y direction) -6000.0 (m/sec) 6000.0 (m/sec)

x9 Thrust Escape (Z direction) -3000.0 (m/sec) 3000.0 (m/sec)

x10 Thrust Capture (X direction) -6000.0 (m/sec) 6000.0 (m/sec)

x11 Thrust Capture (Y direction) -6000.0 (m/sec) 6000.0 (m/sec)

x12 Thrust Capture (Z direction) -3000.0 (m/sec) 3000.0 (m/sec)

x13 Thrust DSM (X direction) -1000.0 (m/sec) 1000.0 (m/sec)

x14 Thrust DSM (Y direction) -1000.0 (m/sec) 1000.0 (m/sec)

x15 Thrust DSM (Z direction) -500.0 (m/sec) 500.0 (m/sec)

x16 Altitude Flyby 1 0.00 (∼ Altmin) 1.00 (∼ Altmax)

x17 Altitude Flyby 2 0.00 (∼ Altmin) 1.00 (∼ Altmax)

x18 Altitude Flyby 3 0.00 (∼ Altmin) 1.00 (∼ Altmax)

integer

y1 Planet Flyby 1 1 (Mercury) 9 (Pluto)

y2 Planet Flyby 2 1 (Mercury) 9 (Pluto)

y3 Planet Flyby 3 1 (Mercury) 9 (Pluto)

The objective function f(x, y) to be minimized is defined as the total ∆V (change in

velocity) of the mission, which is produced by all the individual thrusting maneuvers.

107

This is in particular the ∆Vescape, ∆Vcapture and ∆VDSM . While the ∆VDSM directly

corresponds to the thrusting of the DSM, the ∆Vescape and ∆Vcapture take into account

velocity of the escape and capture planet and thus express the velocity change in reference

to the planet and not the Sun. The mathematical formulation of the objective function

is given in Equation 6.3:

f(x, y) = ∆V = ∆Vescape + ∆Vcapture + ∆VDSM ,

with

∆Vescape =

√
2µEarth

x2
7 + x2

8 + x2
9

−
√

2µEarth(
1

REarth
peregee

− 1

REarth
apogee −REarth

peregee

),

∆Vcapture =

√
2µJupiter

x2
10 + x2

11 + x2
12

−
√

2µJupiter(
1

RJupiter
peregee

− 1

RJupiter
apogee −RJupiter

peregee

),

∆VDSM =
√
x2

13 + x2
14 + x2

15.

(6.3)

The astrophysical constants used in Equation 6.3 are listed in Table 6.12.

Table 6.12: Gravitation parameter and apsis for Earth and Jupiter

µEarth = 3.986 · 1014 REarth
peregee = 6778000 REarth

apogee = 42165000

µJupiter = 1.267 · 1017 RJupiter
peregee = 109 RJupiter

apogee = 2 · 1010

The mission is restricted to twelve nonlinear constraints g1(x, y), ..., g12(x, y) which take

into account on the trajectory of the spacecraft. The calculation of the trajectory (nom-

inated as RSpacecraft(t)) is not given in detail here, as its implementation takes into

account several complex subroutines, which were friendly provided by EADS Astrium

(http://www.astrium.eads.net/). Those subroutines model for example the orbit prop-

agation of the spacecraft based on Lagrange coefficients. Here only the mathematical

structure of the constraints g(x, y) should be illustrated, which form the MINLP problem.

108

http://www.astrium.eads.net/

The full implementation of the Mission (including the subroutines provided by Astrium)

can be downloaded at http://www.midaco-solver.com/applications.html for study-

ing or reproduction purposes. Table 6.13 describes the notation used in the constraints

for those functions, which are not given in detail here.

Table 6.13: Notation for constraints
Notation Description

RSpacecraft(t) Position of the spacecraft at time t

RPlanet(t, P) Position of planet P at time t

V Planet(t, P) Velocity of planet P at time t

V Spacecraft
X (t) Velocity of the spacecraft (X direction)

V Spacecraft
Y (t) Velocity of the spacecraft (Y direction)

V Spacecraft
Z (t) Velocity of the spacecraft (Z direction)

rotaPlanet(P) Orbit rotation time (in days) of planet P

S% Sphere of action radius of a planet (given in percentage ∈ [0, 1])

The first three constraints model the necessary condition for the flyby maneuvers, that the

spacecraft is within the sphere of action (roughly speaking the position) of the concrete

flyby planet (here y1, y2 and y3) at the time, when the actual flyby maneuver is supposed

to happen. This time point depends on the launch date x1 and the time durations of the

arcs (x2, ..., x6). The radius of the sphere of action is based on the distance of the concrete

flyby planet to the sun. Here the constraints assume, that the spacecraft is within at least

S% percent (with S% ∈ [0, 1], where 0 ∼ 0% and 1 ∼ 100%) of this distance, which is

considered the sphere of action. Equation 6.4 states the mathematical structure of the

109

http://www.midaco-solver.com/applications.html

first three constraints:

g1(x, y) =‖RSpacecraft(x1 + x2)−RPlanet(x1 + x2, y1)‖

6 S% ‖RPlanet(x1 + x2, y1)‖,

g2(x, y) =‖RSpacecraft(x1 + x2 + x3)−RPlanet(x1 + x2 + x3, y2)‖

6 S% ‖RPlanet(x1 + x2 + x3, y2)‖,

g3(x, y) =‖RSpacecraft(x1 + x2 + x3 + x4)−RPlanet(x1 + x2 + x3 + x4, y3)‖

6 S% ‖RPlanet(x1 + x2 + x3 + x4, y3)‖.

(6.4)

The fourth constraint models the necessary condition, that the spacecraft is within the

sphere of action of Jupiter (Planet number 5) at the very end of the mission. This is done

analog to the first three constraints. Equation 6.5 states the mathematical structure of

the fourth constraint:

g4(x, y) =‖RSpacecraft(x1 + x2 + x3 + x4 + x5 + x6)

−RPlanet(x1 + x2 + x3 + x4 + x5 + x6, 5)‖

6 S% ‖RPlanet(x1 + x2 + x3 + x4 + x5 + x6, 5)‖.

(6.5)

The fifth to seventh constraint model the necessary condition, that the velocity of the

spacecraft at the very end of the mission is identical to the velocity (and direction) of the

target planet, Jupiter. This is to later allow the spacecraft to orbit Jupiter. As the total

velocity of Jupiter itself (‖V Planet(t, 5)‖) is undirected, three constraints are necessary to

take into account the specific directions (in X,Y , and Z). The same tolerance S% for

the sphere of action (described above) is applied here to the total velocity of the target

planet, to allow some tolerance in fulfilling these constraints. Equation 6.6 states the

110

mathematical structure of the fifth to seventh constraint:

g5(x, y) =|V Spacecraft
X (x1 + x2 + x3 + x4 + x5 + x6)−

V Planet
X (x1 + x2 + x3 + x4 + x5 + x6, 5)|

6 S% ‖V Planet(x1 + x2 + x3 + x4 + x5 + x6, 5)‖,

g6(x, y) =|V Spacecraft
Y (x1 + x2 + x3 + x4 + x5 + x6)−

V Planet
Y (x1 + x2 + x3 + x4 + x5 + x6, 5)|

6 S% ‖V Planet(x1 + x2 + x3 + x4 + x5 + x6, 5)‖,

g7(x, y) =|V Spacecraft
Z (x1 + x2 + x3 + x4 + x5 + x6)−

V Planet
Z (x1 + x2 + x3 + x4 + x5 + x6, 5)|

6 S% ‖V Planet(x1 + x2 + x3 + x4 + x5 + x6, 5)‖.

(6.6)

Some additional constraints are imposed, to avoid feasible, but undesired solutions. Those

undesired solutions might attract the optimization algorithm, but are not of any relevance

and should therefore be avoided. The eighth constraint impose, that not all flyby maneu-

vers happen at the planet Earth. Equation 6.7 states the mathematical structure of the

eighth constraint:

g8(x, y) =

{
∞ , if y1 = y2 = y3,

0 , else.
(6.7)

The ninth to twelfth constraint impose, that if two successive flybys happen at the same

planet, the time duration between those flybys must be at least greater or equal than half

of the total rotation time of the flyby planet (in respect to the sun). Equation 6.8 states

111

the mathematical structure of the ninth to twelfth constraint constraint:

g9(x, y) =

{
rotaPlanet(y1)

2
− x2 6 0 , if y1 = 3,

0 , else,

g10(x, y) =

{
rotaPlanet(y2)

2
− x3 6 0 , if y2 = y1,

0 , else,

g11(x, y) =

{
rotaPlanet(y3)

2
− x4 6 0 , if y3 = y2,

0 , else,

g12(x, y) =

{
rotaPlanet(5)

2
− (x5 + x6) 6 0 , if 5 = y3,

0 , else.

(6.8)

6.5.2 Numerical Results

MIDACO has been used to solve this application in a two step approach. In a first step,

a number of several test runs using different random seeds are performed on the full

mission model using a moderate parameter of S% = 0.03 (which is 3%) for the accuracy

of the sphere of action around the planets. As the accuracy of the sphere of action is a

crucial parameter in the model, this moderate accuracy will allow MIDACO to identify

possible feasible mission trajectories more easily, while concentrating more on the integer

complexity of the problem. In a second step, the most promising solutions found within

the first step should then be further refined by MIDACO, assuming a higher accuracy of

0.5% for the sphere of action.

Table 6.15 lists the results of the first optimization step, where MIDACO is applied 10

112

times on the space mission model using different random seeds and a moderate precision

of 3% for the sphere of action in the model. Every test run was performed for a duration

of one hour on a PC with an Intel Xeon CPU E5640 (2.67GHz clock rate, 4GB RAM)

which corresponds to some hundred million function evaluation. Note, that such a high

amount of function evaluation is nothing unusual for a stochastic algorithm applied on a

difficult problem. As the MIDACO software is capable of processing millions of iterates

in seconds, the total cpu runtime of one hour remains here still reasonable.

Table 6.14: Abbreviations for Table 6.15
Abbreviation Explanation

Run Number of test run

Launch Date for mission departure from Earth

∆V Objective function value (m/sec)

Duration Duration of total mission (Years)

FlyBy 1 Planet selected by MIDACO for 1st gravity assist maneuver

FlyBy 2 Planet selected by MIDACO for 2nd gravity assist maneuver

FlyBy 3 Planet selected by MIDACO for 3rd gravity assist maneuver

Table 6.14 explains the abbreviations used in Table 6.15.

Table 6.15: 10 test runs by MIDACO on mission model with 3% sphere of action
Run Launch ∆V Duration FlyBy 1 FlyBy 2 FlyBy 3

1 6 Nov. 1989 2553 5.88 Venus Earth Earth

2 30 Nov. 1989 3310 4.83 Venus Earth Earth

3 30 Nov. 1989 3218 4.88 Venus Earth Earth

4 10 Jul. 1989 3390 3.97 Venus Earth Mars

5 20 Nov. 1989 2890 4.77 Venus Earth Earth

6 23 May 1989 2759 5.35 Earth Venus Earth

7 21 Mar 1989 infeasible 4.85 Earth Earth Mars

8 13 Apr. 1989 3290 4.54 Earth Venus Earth

9 30 Nov. 1989 3289 4.79 Venus Earth Earth

10 16 Sep. 1989 2684 6.10 Venus Earth Earth

113

As it can be seen from Table 6.15, MIDACO did reveal a number of possible mission tra-

jectory, based on different flyby planet candidates. Those missions vary strongly in their

characteristics, as it can be seen from the differences in the launch date, objective function

values ∆V and total flight durations. Only in one case (test run number 7), MIDACO

did not succeed to find a feasible mission trajectory. The integer combination mostly

attracted by MIDACO is (Venus, Earth, Earth), which is indeed the same combination as

used in the original Galileo mission. Besides this combination, the combination (Venus,

Earth, Mars) found in test run number 4 seems somewhat interesting. This mission has

the worst (in esp. highest) objective function value, but also the shortest flight duration.

In a second optimization step, the solutions corresponding to test run number 1 (named

Mission1) and number 4 (named Mission4)from Table 6.15 should now be refined by

MIDACO, assuming a more precise accuracy of 0.5% for the sphere of action around the

planets. For this purpose, those solutions are given to MIDACO as starting point and the

QSTART parameter explained in Section 4.2 is activated (using a value of 10000) for a

more efficient search in the vicinity of the submitted initial solution. MIDACO is applied

to the refined model for one hour again for both initial solutions (in esp. Mission1 and

Mission4 from Table 6.15). Table 6.16 shows the solutions of the refinement of Mission1

and Mission4 with details on the individual flyby maneuvers. Table 6.16 also compares

these two missions generated by MIDACO with the original Galileo mission regarding

their main characteristics.

114

Table 6.16: Comparison between original Galileo and MIDACO Missions
Galileo Mission Mission1 refine 0.5 % Mission4 refine 0.5 %

Launch 18 Oct. 1989 8 Nov. 1989 6 Jul. 1989

Duration 6.14 Years 6.14 Years 4.15 Years

∆V unknown 3,350 m/sec 5,177 m/sec

1st Flyby

Planet Venus Venus Venus

Date 10 Feb. 1990 23 Feb. 1990 21 Jan. 1990

Altitude 16,000km 28,901km 3,013km

2nd Flyby

Planet Earth Earth Earth

Date 8 Dec. 1990 5 Dec. 1990 4 Sep. 1990

Altitude 960km 473,191km 1,754km

3rd Flyby

Planet Earth Earth Mars

Date 8 Dec. 1992 4 Dec. 1992 31 Dec. 1990

Altitude 303km 300km 39km

Analyzing the Missions from Table 6.16, the structural difference between Mission1 and

Mission4 is evident. Mission4 is however in so far interesting in respect to Mission1, as

it provides a much shorter (∼ 32.4%) flight duration to the price of an equivalent in-

creased (∼ 35.3%) objective function value. More interestingly is the striking similarity

between Mission1 and the original Galileo mission. With a shift of about 22 days regard-

ing the launch date, these two mission share exactly the same flight duration and are

closely related regarding all the characteristics of their gravity assist maneuvers, except

the flyby altitude at the 2nd flyby. Here a significant difference between 960km (Galileo)

and 473,191 km (Mission1) occurs. However, this difference can be well explained by

taking into account, that for the original Galileo mission the observation of asteroids were

an objective, while asteroids were not considered in the model formulation here. Both

missions perform their first Earth flyby in December 1990. The Galileo mission performs

its first flyby at Earth at a moderate altitude of 960km in order to significantly increase

115

the semi major axis of its orbit to visit the Gaspra asteroid in October 1991. This new

orbit is then rotated one time by the Galileo probe, before it performs its second flyby at

Earth two years later in 1992. As in this model here asteroids were not considered, this

maneuver is not a target in Mission1. Therefore Mission1 performs its first flyby at Earth

at a very large altitude of 473,191 km in order to have only a very small gravitational

impact on its trajectory. This way Mission1 can perform two rotations of its near Earth

orbit in a row, before it performs its second Earth flyby two years later in December 1992

like the original Galileo mission.

Figure 6.5 shows the space mission trajectory of the original Galileo mission (image taken

from Wikimedia (http://commons.wikimedia.org)) and the Mission1 generated by MI-

DACO. The coincidence of the major events of both missions can be well observed. Also

the difference in the trajectories between the 2nd and 3rd flyby can be seen: While

Galileo performs one orbit rotation visiting Gaspra, Mission1 remains in a close Earth

orbit rotating it two times.

Note, that Video Animations of the MIDACO Mission1 and Mission4 are available at

http://www.midaco-solver.com/applications.html for downloading.

116

http://commons.wikimedia.org
http://www.midaco-solver.com/applications.html

Figure 6.5: Space trajectories of the NASA Galileo mission and MIDACO Mission1

117

6.5.3 Space Mission Design: Conclusions

For the first time a multi gravity assist interplanetary space mission was considered in an

MINLP formulation, considering flyby planet candidates as discrete decision variables. As

space trajectory optimization problems are known to be very difficult (see Section 6.4),

this MINLP approach can be considered as exceptionally challenging. In accordance to the

Galileo mission by NASA in 1989, a general space mission model for transfers from Earth

to Jupiter was formulated, based on three flyby maneuvers. In a two step optimization

process, it could be shown, that MIDACO is able to generate feasible space trajectories in

a reasonable time and accuracy fully automatically. The results from Table 6.15 indicate,

that the space mission model setting was general enough, to allow several feasible space

trajectories (which implies a sufficient large search space). Among some different space

mission trajectory candidates, MIDACO did reveal the Galileo type of mission with high

probability (7 out of 10 cases). The accuracy of the sphere of action around the planets

was identified as crucial model parameter. Within a second optimization step, MIDACO

was able to refine its generated missions to a sufficient accuracy of 0.5% and the fully

automatically generated mission by MIDACO showed an intriguing coincidence with the

characteristics of the original Galileo mission from 1989.

6.6 Multiple-Stage Launch Vehicle Ascent Problem

The ascent of a multiple-stage launch vehicle is considered here. The model is based

on a Delta III rocket (The Boeing Company) and was originally introduced by Benson

[5]. In its original (continuous) formulation, the model is used as a benchmark in the

open literature Huntington [31] and in well known optimal control software packages like

118

GPOPS [37].

Here, the original model as given in GPOPS [37] is extended by additional mixed integer

decision variables and nonlinear constraints, creating a challenging mixed integer multi

stage optimal control problem. While in the original formulation the type and number

of strap on boosters used for the rocket propulsion is fixed, those two engineering design

aspects are formulated as discrete decision variables here. It can be shown, that by

introducing those additional degrees of freedom, significant improvements in the objective

function can be gained in comparison to the original model. Additionally incorporated

constraints on the maximal dynamic pressure for the vehicle and a virtual financial budget

(based on the type of strap on boosters employed) ensure, that the feasible solutions are

still reasonable.

The objective in this application is to maximize the remaining fuel of the vehicle while

maneuvering it from the ground to a low earth target orbit. In the following, the model

formulation in GPOPS [37] is closely followed while the above mentioned extensions are

especially highlighted in an individual subsection.

Note that the implementation of this application discussed in the following can be down-

loaded at http://www.midaco-solver.com/applications.html.

6.6.1 Vehicle Properties

The launch vehicle consists of two main stages and contains nine strap-on solid rocket

boosters. The flight of the vehicle to its target orbit can be divided into four different

phases. The first flight phase considers the vehicle on the ground at time t0. The main

engine and a number of boosters ignite (the concrete number of boosters is considered

119

http://www.midaco-solver.com/applications.html

an optimization variable here). At time t1 the number of boosters ignited at t0 are

depleted and the remaining dry mass is jettisoned. In the following second flight phase,

the remaining strap-on boosters ignite and are depleted at time t2. The third flight phase

does only consider propulsion by the main engine of the vehicle stage 1. The fourth flight

phase begins when the main engine fuel is finished and the dry mass associated with the

main engine is ejected at time t3. During flight phase four only the main engine of the

vehicle stage 2 is used for propulsion. The flight phase four ends at time t4, when the

vehicle reaches the desired low earth target orbit. Note that the solid boosters and main

engine burn for their entire duration (meaning t1, t2, and t3 are fixed), while the second

stage engine is shut off when the target orbit is achieved, therefore t4 is an optimization

variable. The mass and propulsion properties of the two vehicle stages are taken from

GPOPS [37] and listed in Table 6.17.

Table 6.17: Vehicle mass and propulsion properties
Stage 1 Stage 2

Total Mass (kg) 104380 19300

Propellant Mass (kg) 95550 16820

Engine Thrust (N) 1083100 110094

Specific Impulse (sec) 301.7 467.2

Number of Engines 1 1

Burn Time (sec) 7261 700

Dynamic Model

The equations given in 6.9 express the Cartesian coordinates (earth-centered) of a non-

120

lifting mass point in flight over a spherical rotating planet

ṙ = v,

v̇ = − µ

‖r‖3
+
T

m
u+

D

m
,

ṁ = − T

g0Isp
,

(6.9)

where r = (x, y, z)′ is the (earth-centered) Cartesian position of the mass point, r =

(vx, vy, vz)
′ is the velocity, µ is the gravitational parameter, T is the vacuum thrust, m is

the mass, g0 is the acceleration due to gravity at sea level, Isp the specific impulse of the

engine, u = (ux, uy, uz)
′ is the thrust direction and D = (Dx, Dy, Dz)

′ is the drag force.

The drag force is defined as

D = −1

2
ρSCD‖vrel‖vrel , (6.10)

where CD is the drag coefficient, S is the reference area, ρ is the atmospheric density and

vrel is the earth relative velocity, where vrel is given as

vrel = v − Ω× r, (6.11)

where Ω is the angular velocity of the earth relative to the inertial reference frame. The

atmospheric density is modelled as the exponential function

ρ = ρ0e
−h
H , (6.12)

where ρ0 is the atmospheric density at sea level, h = ‖r‖ − Re is the altitude, Re is the

equatorial radius of the earth and H is the density scale height. Table 6.18 contains the

numerical values for the constants used in the vehicle model.

121

Table 6.18: Constants used in the launch vehicle model
Constant Value

Payload mass (kg) 4164

S (m2) 4 π

CD 0.5

ρ0 (kg/m3) 1.225

H (m) 7200

t1 (sec) 75.2

t2 (sec) 150.4

t3 (sec) 261

Re (m) 6378145

Ω (rad/s) 7.29211585 × 10−5

The launch vehicle starts on the ground at rest (relative to the earth) at time t0, so that

the earth centered initial conditions are

r(t0) := r0 = (RecosΦ0, 0, ResinΦ0)′,

v(t0) := v0 = Ω× r0,

m(t0) := m0 = 301454(kg),

(6.13)

where Φ0 = 28.5◦ and corresponds to the geocentric latitude of Cape Canaveral (Florida)

and it is arbitrarily assumed that the inertially fixed axes are such that the initial inertial

longitude is zero. The terminal constraints define the target geosynchronous transfer

orbit, which is defined in terms of orbital elements as

af = 24361.14 km,

ef = 0.7308,

if = 28.5◦,

Ωf = 269.8◦,

ωf = 130.5◦,

where a is the semimajor axis, e is the eccentricity, i is the inclination, Ω is the inertial

122

longitude of the ascending node and ω is the argument of perigee. The true anomaly v

is considered free, as no location in the terminal orbit is specified as constraint. Besides

the primary constraint of reaching the terminal orbit, a state path constraint keeps the

altitude of the vehicle above the earth surface and is given as

|r| > Re, (6.14)

where Re is the equatorial radius of the earth. In contrast to the original model formula-

tion in GPOPS [37], no equality path constraint of the form

‖u‖2 = u2
x + u2

y + u2
z = 1 (6.15)

is necessary here, because the Pitch and Yaw system is applied to control the vehicle that

inherently satisfies the above equality path constraint. The transformation from Pitch

(Ψ) and Yaw (Φ) to the cartesian thrust direction u = (ux, uy, uz)
′ is given by

ux = cos(Ψ)cos(Θ),

uy = cos(Ψ)sin(Θ),

uz = sin(Ψ),

(6.16)

where Ψ ∈ [−π, π] and Θ ∈ [−π
2
, π

2
]. The model further contains linkage constraints

between the different phases regarding the position r, the velocity v and the mass m of

the vehicle. Those linkage constraints are active at the end of phases 1,2 and 3 and the

123

start of phases 2, 3 and 4, respectively as

r(p)(tf)− r(p+1)(t0) = 0,

v(p)(tf)− v(p+1)(t0) = 0,

m(p)(tf)−m(p)
dry −m

(p+1)(t0) = 0,

(6.17)

where the subscript (p) denotes the phase number (in esp. p = {1, 2, 3}) and t0 and tf

denote the start and final time points of the corresponding phase. The linkage constraints

force the position r and velocity v to be continuous regarding the phase transition. The

linkage constraint on the mass m(p) at each of the phase interfaces corresponds with an

instantaneous drop of the dry mass m
(p)
dry of the particular phase (p). Therefore the mass

trajectory is not continuous at the stage interfaces, when mass is ejected. Here, mass

drops at the ends of phases 1,2 and 3, when the dry mass of the strap-on boosters or

the first main stage is depicted. In contrast to the original formulation of the model in

GPOPS [37], the amount of dry mass associated with the strap-on boosters dropped at

the ends of phases 1 and 2 depends on the number of boosters chosen, which is an integer

decision variable (see Subsection 6.6.2).

The objective of the problem is to find an optimal control (and corresponding trajectory)

that maximizes the remaining mass of the vehicle at the end of phase 4. This objective

is expressed as minimization of the cost functional J given as

J = −m(4)(tf), (6.18)

subject to the above defined conditions and constraints.

124

6.6.2 Mixed Integer Extensions

The launch vehicle model is extended by some discrete decision variables regarding the

number and type of strap-on boosters used. While in the original formulation in GPOPS

[37] the number of strap-on boosters is considered fixed (6 booster for phase 1 and 3

booster for phase 2), here the number of strap-on booster applied in the first phase is a

decision variable and denoted by B1 ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The number B2 of strap-

on booster applied in the second phase is then recursively computed by B2 = 9−B1 and

therefore not considered a decision variable. Further to the number of boosters applied,

also the type of booster is considered to be variable here. For simplicity and practical

relevance the selection of booster types is restricted to phase 1 and 2. Hence, all boosters

of phase 1 or 2 are assumed to be of the same type. Based on the type of strap-on booster

defined in the original formulation, four new types are generated. Those four new types

do vary in 10 and 25 percentage respectively to the properties of the original booster

defined in GPOPS [37]. Table 6.19 lists all five possible strap-on booster types with their

properties. Note, that in Table 6.19 the booster type 3 corresponds to the original booster

considered in GPOPS [37].

Table 6.19: Abbreviations for Table
Type Thrust Power (N) Mass Total (kg) Mass Propellant (kg) Cost

1 471375 14468 12758 0.75

2 565650 17361 15309 0.90

3 628500 19290 17010 1.00

4 691350 21219 18711 1.10

5 785625 24113 21263 1.25

Table 6.19 also introduces a new property for the five considered booster types. This is

a virtual cost which is based on the original strap-on booster. Hence the cost for booster

125

type 3 is defined as 1.00 while the costs for all other boosters correspond with their 10 or

25 percentage property in- or decrease. The here introduced cost property of the booster

types is later used to define some financial constraint that restricts the feasible choice of

boosters.

6.6.3 Additional Constraints

Additional constraints are considered here. This is a maximal dynamic pressure constraint

which ensures, that the dynamic pressure on the launch vehicle never exceeds 50.000

N/m2. This constraint is to ensure that the choice of boosters implies a reasonable

dynamic pressure behavior that does not damage the space vehicle. The dynamic pressure

constraint is given by

1

2
P ||v||2 6 50000, (6.19)

where P is the atmospheric pressure calculated as

P = 1.249512 e−
||r||
6900 . (6.20)

A further constraint is introduced as maximal financial budget regarding the type of

strap-on boosters. The maximal available budget is considered here as 9, which is based

on the original model formulation applying 9 boosters of type 3 (which has cost 1 as listed

in Table 6.19). The financial budget constraint is formulated as

B1T1 +B2T2 6 9, (6.21)

126

where B2 = 9 − B1 is the number of strap-on boosters used in the second phase. Last,

a vertical take-off constraint is imposed which ensures, that the vehicle launches vertical

during the first five seconds of its flight. This constraint is considered a security procedure

that increases the realistic relevance of the launch vehicle start. The vertical take-off

constraint is imposed as a fixed control u = (ux, uy, uz)
′ during the first five seconds of

phase 1, where u is given by

u =
r

||r||
. (6.22)

6.6.4 Numerical Results

To solve the above described (mixed integer multi stage) optimal control problem, an

reduced direct approach is followed, where a Runge Kutta method of order 2 is applied

to integrate the ordinary differential equations 6.9. A discretization of 15 grid points is

applied in each of the four flight phases, which is identical to the number of grid points

used in GPOPS [37]. The resulting MINLP has then 128 decision variables, where 3 of

them are discrete (this is B1, T1, T2; see Table 6.20), and 127 constraints, where 5 of them

are equality constraints defining the target orbit. The integer complexity of the MINLP

is 250 (10× 5× 5).

A hybrid optimization strategy is implemented. This strategy first applies MIDACO to

search the MINLP formulation on the full mixed integer search domain for a fixed time

budget. In a second step, an SQP algorithm (SQP-Filtertoolbox by Prof. Gerdts) is

applied, using the solution given by MIDACO as initial starting point. For the SQP

method the 3 discrete decision variables are fixed to the values given by the MIDACO

solution, hence the SQP is applied only on the continuous search domain of the problem

127

and considered a refinement technique for the MIDACO solution. More details on the

hybridization of MIDACO and SQP can be found in Section 4.3.

Before optimizing the full MINLP an investigation on the impact of the discrete decision

variables is performed. Table 6.21 presents the best known results for the launch vehicle

problem in respect to different combinations of discrete variables that have been fixed.

Only feasible combinations with B1 > 6 are considered in Table 6.21. For integer com-

binations with B1 = 9 results are only reported in respect to T1 because the influence of

T2 is literally zero in this scenario (B2 = 9 − B1). Table 6.20 contains the abbreviations

for Table 6.21. Note, that in Table 6.21 the integer combination {B1 = 6, T1 = 3, T2 = 3}

expresses the original booster configuration as assumed in GPOPS [37]. While in GPOPS

[37] an optimal objective function of 7529.71kg is reported, here a value of 7504.48kg is

given to the corresponding integer combination {6, 3, 3}. This difference find its explana-

tion in the additional constraints and different integration approach applied here.

From the results of Table 6.21 it can be seen, that the discrete booster decision variables do

have a significant impact on the objective function. In esp. seven different combinations

can be identified, that improve the result in respect to the original combination of {6, 3, 3}.

The best known result in Table 6.21 corresponds to the integer combination of {8, 3, 3}.

The non-intuitive and diverse impact of the different integer combination on the solution

exemplifies the complexity of this MINLP formulation very well.

Table 6.20: Abbreviations for Table 6.21
Abbreviation Explanation

Booster-Config. Booster Configuration: B1, T1, T2

B1 Number of active booster in first phase

T1 Type of booster used in first phase

T2 Type of booster used in second phase

Best known f(x, y) Best known objective function for

corresponding booster configuration

128

Table 6.21: Enumeration over all (feasible) booster configurations with B1 > 6

Booster-Config. Booster-Config.

B1 T1 T2 Best known f(x, y) B1 T1 T2 Best known f(x, y)

6 1 1 -6685.71 8 1 1 -6848.21

6 1 2 -6808.53 8 1 2 -6900.99

6 1 3 -6884.45 8 1 3 -6935.36

6 1 4 -6955.92 8 1 4 -6969.11

6 1 5 -7055.32 8 1 5 -7018.56

6 2 1 -7075.93 8 2 1 -7297.53

6 2 2 -7195.10 8 2 2 -7228.32

6 2 3 -7269.14 8 2 3 -7381.77

6 2 4 -7339.15 8 2 4 -7414.42

6 3 1 -7315.13 8 2 5 -7321.22

6 3 2 -7431.81 8 3 1 -7565.08

6 3 3 -7504.48 8 3 2 -7614.97

6 4 1 -7539.17 8 3 3 -7647.50

7 1 1 -6789.90 9 1 - -6855.30

7 1 2 -6883.25 9 2 - -7324.23

7 1 3 -6942.60 9 3 - -7599.88

7 1 4 -6999.74

7 1 5 -7081.49

7 2 1 -7213.85

7 2 2 -7303.58

7 2 3 -7360.66

7 2 4 -7415.64

7 2 5 -7494.50

7 3 1 -7271.36

7 3 2 -7556.82

7 3 3 -7612.70

Table 6.22 and Table 6.22 present the results of 30 individual test runs on the multiple-

stage launch vehicle problem using a fixed budget of 600 (10 Minutes) respectively 7200 (2

Hours) seconds for MIDACO. For every run, a different random seed is used for MIDACO.

The different integer combinations and objective function values to the solutions found

by MIDACO are reported along the number of function evaluation and cpu-time needed

129

by MIDACO. The solutions by the SQP method, which uses the MIDACO solutions as

starting points, are reported together with the number of function evaluation (including

those for gradient approximations) and cpu times. The SQP algorithm were called with

a maximum number of 1000 iterations. Note that the SQP may stop earlier, if its con-

vergence criteria is satisfied, while MIDACO always performs over its defined cpu-time

budget.

130

Table 6.22: 30 runs by MIDACO (max time = 600) + SQP (max iter=1000)

Booster-Config. SQP MIDACO

Run B1 T1 T2 f(x, y) Eval Time f(x, y) Eval Time

1 8 3 3 -7647.50 327060 322.6 -6857.99 222866 600.0

2 9 3 1 -7599.88 274208 292.9 -7163.86 239657 600.0

3 9 3 5 -7599.88 280700 376.8 -7065.85 235807 600.0

4 9 3 5 -7599.88 271308 259.6 -6972.28 198351 600.0

5 8 3 3 -7647.50 306974 282.5 -6963.09 281567 600.0

6 8 3 3 -7647.50 270452 258.3 -6920.35 269536 600.0

7 9 3 5 -7599.88 269558 262.1 -7038.81 262407 600.0

8 8 3 3 -7647.50 281106 264.3 -6820.98 270953 600.0

9 7 3 3 -7612.85 350416 373.0 -6956.02 261879 600.0

10 8 3 3 -7647.50 145076 139.4 -6996.72 268385 600.0

11 8 2 5 -7462.25 330614 314.2 -6918.20 266153 600.0

12 8 3 3 -7647.50 352408 336.5 -6889.87 266954 600.0

13 9 3 5 -7599.88 297954 377.8 -6972.39 258888 600.0

14 8 3 3 -7647.50 339916 368.0 -6818.03 208452 600.0

15 9 3 2 -7599.88 350742 321.5 -7024.97 272402 600.0

16 8 3 3 -7647.47 359535 334.2 -6914.47 270246 600.0

17 7 3 3 -7612.85 362934 367.2 -6977.27 239453 600.0

18 9 3 1 -7599.88 310868 315.7 -6954.59 258475 600.0

19 9 3 5 -7599.87 363478 369.6 -7036.21 245399 600.0

20 9 3 2 -7599.88 343712 351.9 -6797.39 257383 600.0

21 8 3 3 -7647.50 334478 337.0 -6971.25 252131 600.0

22 8 3 3 -7647.50 306314 311.1 -6852.83 254798 600.0

23 8 3 3 -7647.50 305118 299.1 -6929.07 250874 600.0

24 9 3 3 -7599.88 280658 281.6 -7031.31 254307 600.0

25 8 3 3 -7647.50 270780 252.8 -6911.24 212809 600.0

26 6 4 1 -7539.17 364376 335.3 -6814.24 267337 600.0

27 9 3 5 -7599.88 323402 297.5 -6834.61 273553 600.0

28 6 4 1 -7539.17 356594 315.2 -6872.51 287757 600.0

29 9 3 3 -7599.88 288322 265.3 -6876.98 278023 600.0

30 8 3 3 -7647.50 367318 429.2 -7080.80 278160 600.0

Average over all runs: -7612.74 312879 313.7 -6941.14 255498 600.0

131

Table 6.23: 30 runs by MIDACO (max time = 7200) + SQP (max iter=1000)

Booster-Config. SQP MIDACO

Run B1 T1 T2 f(x, y) Eval Time f(x, y) Eval Time

1 9 3 1 -7599.88 357908 317.7 -7419.65 3455790 7200.0

2 9 3 1 -7599.88 353114 315.1 -7449.22 3450447 7200.0

3 8 3 3 -7647.50 363366 321.1 -7502.77 3443609 7200.0

4 9 3 1 -7599.88 267022 236.8 -7419.91 3449060 7200.0

5 9 3 5 -7599.88 309848 274.6 -7418.63 3460976 7200.0

6 9 3 1 -7599.88 173384 153.8 -7436.00 3472466 7200.0

7 9 3 1 -7599.88 346444 307.3 -7555.53 3456612 7200.0

8 9 3 4 -7599.88 265638 234.8 -7369.10 3457577 7200.0

9 7 3 3 -7567.75 6713 6.4 -7565.33 3445493 7200.0

10 9 3 4 -7599.88 284148 254.1 -7524.85 3445318 7200.0

11 8 3 3 -7524.57 7379 7.1 -7519.89 3447985 7200.0

12 8 3 3 -7647.50 354988 313.6 -7481.90 3459946 7200.0

13 9 3 1 -7599.88 270324 240.1 -7444.49 3453002 7200.0

14 8 3 3 -7647.50 363938 322.9 -7479.16 3451839 7200.0

15 9 3 5 -7599.88 266138 235.9 -7500.50 3464034 7200.0

16 9 3 5 -7599.88 301198 266.8 -7519.93 3481049 7200.0

17 9 3 3 -7599.88 344342 307.8 -7456.35 3450507 7200.0

18 9 3 1 -7599.88 273766 242.3 -7528.82 3454741 7200.0

19 9 3 1 -7599.88 298972 267.0 -7527.04 3458943 7200.0

20 9 3 4 -7599.88 324916 290.1 -7431.08 3468826 7200.0

21 9 3 5 -7599.88 355510 317.4 -7498.23 3487475 7200.0

22 9 3 5 -7599.88 341446 322.4 -7430.29 3042720 7200.0

23 8 3 3 -7647.43 309588 370.1 -7536.62 2879186 7200.0

24 9 3 5 -7599.88 349166 425.9 -7460.48 2435917 7200.0

25 8 3 3 -7513.12 7360 9.2 -7505.67 2568537 7200.0

26 6 4 1 -7539.17 361342 332.9 -7434.57 2871096 7200.0

27 9 3 5 -7599.88 313390 313.4 -7348.84 3060132 7200.0

28 9 3 3 -7599.88 263188 347.4 -7475.90 3150988 7200.0

29 8 3 3 -7647.50 355292 321.1 -7470.97 2873982 7200.0

30 8 3 3 -7647.50 365252 327.5 -7491.21 3336049 7200.0

Average over all runs: -7600.91 285169 266.8 -7473.43 3294476 7200.0

In case of Table 6.22 MIDACO reveals the best known integer combination of {8, 3, 3} in 13

out of 30 cases (∼ 43 %). In 12 cases the integer combination of {9, 3,−} has been found.

132

Only one time (Run 11) an integer combination is found by MIDACO, that corresponds

to a solution that is less optimal than the original combination of {6, 3, 3}. The average

objective function value of the MIDACO solutions is 6941.14 kg corresponding to an

average of 255498 function evaluation. The SQP algorithm is able to successfully refine

all MIDACO solutions to the best known solutions presented in Table 6.21, requiring

312879 function evaluation and about 5 Minutes on average.

In case of Table 6.23 MIDACO reveals the best known integer combination of {8, 3, 3}

in 8 out of 30 cases (∼ 27 %). In 20 cases the integer combination of {9, 3,−} has been

found. In all cases MIDACO reveals integer combination, that corresponds to solutions

that are more attractive than the original combination of {6, 3, 3}. The average objective

function value of the MIDACO solutions is 7473.43 kg corresponding to an average of

3294476 function evaluation. The SQP algorithm is able to successfully refine the MI-

DACO solutions to the best known solutions presented in Table 6.21 in 27 out of 30 cases.

In three cases (Run 9, Run 11 and Run 25) the SQP algorithm stops prematurely.

Figure 6.6 contains plots regarding the best known solution to the multiple-stage launch

vehicle problem corresponding to the integer combination {8, 3, 3}. This is in particular

the altitude, control, velocity, mass, energy transfer and dynamic pressure progression of

the launch vehicle during its total flight. It can be seen, that the behavior is very similar

to the original solution reported in GPOPS [37].

133

Figure 6.6: Illustration of the control and physical behavior of the launch vehicle

134

6.6.5 Launch Vehicle: Conclusions and Interpretation

The optimal control of a multiple-stage launch vehicle has been considered. In contrast

to the original purely continuous approach in GPOPS [37], here some mixed integer

extensions regarding the booster configuration along with further non-linear constraints

have been added. Analyzing the impact of those discrete aspects (Table 6.21) revealed a

non-intuitive and diverse integer complexity. The resulting MINLP problem can therefore

be categorized as very challenging and consists of well over 100 variables and constraints,

which is at the limit of current state of the art MINLP solvers, based on evolutionary

algorithms.

Two numerical test series of 30 runs each applied a hybrid strategy of the stochastic

MIDACO algorithm coupled with a deterministic SQP method to solve the MINLP prob-

lem. In both test series MIDACO was able to provide the best known integer combination

of the MINLP with high probability, while the SQP method was in most cases able to

successfully refine those MIDACO solutions in a reasonable time of about 5 Minutes. In-

terestingly it could be observed, that a relative small cpu-time budget of 600 (10 Minutes)

seconds for MIDACO was sufficient, to obtain premature MINLP solutions of such qual-

ity, that the SQP algorithm could always successfully refine those. In contrast to this, the

larger budget of 7200 seconds had two undesired effects, which is a less probability in the

best known integer combination and some over-fitting that led to premature convergence

of the SQP method. The lower probability in finding the best known integer seems to

be correlated to the amount of {9, 3,−} combinations revealed by MIDACO. Due to the

insignificance of the third integer variable T2 in the scenario of B1 = 0, those solutions

have a five times higher probability. As the refinement of the solution to the optimal

control problem is highly depending on the precision of the continuous variables, a longer

135

runtime for MIDACO implies therefore a higher probability to switch to the sub-optimal

{9, 3,−}.

136

Conclusions

In this thesis a conceptual new algorithm for general MINLP was developed. It is based

on a combination of an extension of the ACO metaheuristic (Chapter 2) and the Oracle

Penalty Method (Chapter 3) for constraint handling. Both components are novel devel-

opments that contribute to the field of heuristic optimization theory and can be found

in separate publications in the open literature in [43], [44] and [45]. A sophisticated im-

plementation (MIDACO) of this new MINLP algorithm was engineered (Chapter 4) and

has already been adopted by multiple international academic institutions (see the Intro-

duction or [28] and [49], where MIDACO is applied in the open literature), stating the

practical relevance of the here developed work.

Due to the heuristic nature of the here proposed algorithm, a comprehensive amount of

numerical results has been presented in order to evaluate the usefulness and performance

of this novel approach. The numerical results were divided into two major parts: Chapter

5 focused on the performance on comprehensive MINLP benchmark sets with up to 100

test instances and compared the MIDACO performance with those of several established

MINLP software codes (in esp. MISQP, BONMIN and COUENNE). It was revealed that

the here proposed approach is absolute competitive with the established ones (see Table

5.5 and Table 5.6). In terms of number of global optimal solutions and cpu runtime

137

performance it was even able to outperform its competitors, based on classical MINLP

algorithms as illustrated in Chapter 1. Regarding the number of function evaluation

(which is an important criteria for cpu time expensive applications), it could be shown,

that the implementation is also competitive, if (massive) parallelization capabilities are

available (see Table 5.7). Furthermore, to the best knowledge of the author, this (massive)

parallelization capability based on reverse communication is an unique feature of the

MIDACO software in the area of MINLP solvers and is a very promising property in

respect to the growing trend of parallelization in computer science.

Chapter 6 presented numerical results on real world applications, which were focused on

continuous and mixed integer space and aerospace applications. All those applications

are known to be difficult or even very difficult. The here developed approach was able

to solve those applications to their best known solution and did even reveal several new

best known solutions (see Table 6.1). In particular, the concept of mixed integer based

optimization was adapted to space applications like the Launch Vehicle (Section 6.6) and

Interplanetary Space Mission (Section 6.5) for the very first time here, demonstrating

the potential of the introduced approach to MINLP in this context. Furthermore, the

hybridization capabilities of the here proposed stochastic algorithm with deterministic

algorithms like SQP were demonstrated on the F8-Aircraft (see Table 6.2) and Launch

Vehicle (see Table 6.22) application.

In conclusion, this thesis does offer a valuable contribution to both, the theory of heuristic

optimization for MINLP in general and the application to real world optimization prob-

lems, which were focused here on space applications in particular. With already multiple

independent international academic users of the MIDACO software (which expresses the

here introduced algorithm) the here developed new approach to MINLP is considered

successful.

138

Appendix A

Evaluation of the Oracle Penalty Method

A set of 60 constrained benchmark problems from the open literature has been considered
to evaluate the performance of the penalty functions considered in Chapter 3. Detailed
information on the problems is listed in Table 25 while Table 24 contains explanations for
the abbreviations used. Further details on those problems can be found in Schittkowski
[40].

Table 24: Abbreviations for Table 25
Abbreviation Explanation
Name Problem name used in the literature
n Number of variables in total
nint Number of integer variables
me Number of equality constraints
m Number of constraints in total
f(x∗y∗) Best known objective function value

Table 25: Information on the benchmark problems
Name n nint m me f(x∗, y∗)
asaadi 1.1 4 3 3 0 -0.409566D+02
asaadi 1.2 4 4 3 0 -0.380000D+02
asaadi 2.1 7 4 4 0 0.694903D+03
asaadi 2.2 7 7 4 0 0.700000D+03
asaadi 3.1 10 6 8 0 0.372195D+02
asaadi 3.2 10 10 8 0 0.430000D+02
van de Braak 1 7 3 2 0 0.100000D+01
van de Braak 2 7 3 4 0 -0.271828D+01
van de Braak 3 7 3 4 0 -0.898000D+02

139

Table 26: Information on the benchmark problems (continued)
Name n nint m me f(x∗, y∗)
nvs01 3 2 3 1 0.124697D+02
nvs02 8 5 3 3 0.596418D+01
nvs03 2 2 2 0 0.160000D+02
nvs05 8 2 9 4 0.547093D+01
nvs07 3 3 2 0 0.400000D+01
nvs08 3 2 3 0 0.234497D+02
nvs10 2 2 2 0 -0.310800D+03
nvs11 3 3 3 0 -0.431000D+03
nvs12 4 4 4 0 -0.481200D+03
nvs13 5 5 5 0 -0.585200D+03
nvs14 8 5 3 3 -0.403581D+00
nvs15 3 3 1 0 0.100000D+01
nvs17 7 7 7 0 -0.110040D+04
nvs18 6 6 6 0 -0.778400D+03
nvs19 8 8 8 0 -0.109840D+04
nvs20 16 5 8 0 0.230922D+03
nvs21 3 2 2 0 -0.568478D+01
nvs22 8 4 9 4 0.605822D+01
nvs23 9 9 9 0 -0.112520D+04
nvs24 10 10 10 0 -0.103320D+04
duran/grossmann 1 6 3 6 0 0.600974D+01
duran/grossmann 2 11 5 14 1 0.730357D+02
duran/grossmann 3 17 8 23 2 0.680100D+02
floudas 1 5 3 5 2 0.766718D+01
floudas 2 3 1 3 0 0.107654D+01
floudas 3 7 4 9 0 0.457958D+01
floudas 4 11 8 7 3 -0.943470D+00
floudas 5 2 2 4 0 0.310000D+02
floudas 6 2 1 3 0 -0.170000D+06
ST E36 2 1 2 1 -0.246000D+03
ST E38 4 2 3 0 0.719773D+04
ST E40 4 3 5 1 0.282430D+02
ST MIQP1 5 5 1 0 0.281000D+03
ST MIQP2 4 4 3 0 0.200000D+01
ST MIQP3 2 2 1 0 -0.600000D+01
ST MIQP4 6 3 4 0 -0.457400D+04
ST MIQP5 7 2 13 0 -0.333890D+03
ST TEST1 5 5 1 0 0.000000D+00
ST TEST2 6 6 2 0 -0.925000D+01
ST TEST4 6 6 5 0 -0.700000D+01
ST TEST5 10 10 11 0 -0.110000D+03
ST TEST6 10 10 5 0 0.471000D+03
ST TEST8 24 24 20 0 -0.296050D+05
ST TESTGR1 10 10 5 0 -0.128116D+02
ST TESTGR3 20 20 20 0 -0.205900D+02
ST TESTPH4 3 3 10 0 -0.805000D+02
TLN2 8 8 12 0 0.230000D+01
ALAN 8 4 7 2 0.292500D+01
MEANVARX 35 14 44 8 0.143692D+02
OAER 9 3 7 3 -0.192310D+01
MIP-EX 5 3 7 0 0.350000D+01

140

Table 29 lists the results for all 60 problems respectively to the penalty function employed
in MIDACO. According to the specific problem and penalty function employed the number of
global optimal solutions and the number of feasible solutions obtained are presented. The
best, worst and mean objective function value, the average amount of function evaluations
and time (in seconds) is also reported over all feasible solutions. In case no feasible solution
was found, this information is not available. Table 27 explains all abbreviations used in
Table 29. All results were calculated on the same personal computer with 2 GHz clock
rate and 2 GB RAM working memory.

Table 27: Abbreviations for Table 29
Abbreviation Explanation
Name Problem name used in the literature
Penalty Penalty function used in MIDACO
Opt Number of global optimal solutions found out of 100 test runs
Feas Number of feasible solutions found out of 100 test runs
fbest Best (feasible) objective function value found out of 100 test runs
fworst Worst (feasible) objective function value found out of 100 test runs
fmean Mean objective function value over all runs with a feasible solution
evalmean Mean number of evaluations over all runs with a feasible solution
timemean Mean cpu-time (in seconds) over all runs with a feasible solution
na information is not available (in case no feasible solution was found)

Table 28: Detailed results for the constrained benchmark problems
Name Penalty Opt Feas fbest fworst fmean evalmean timemean
asaadi 1.1 Oracleupdate 100 100 -40.95 -40.95 -40.95 1642 0.014

Oraclefix 100 100 -40.95 -40.95 -40.95 1144 0.015
Static 100 100 -40.95 -40.95 -40.95 1125 0.013
Death 100 100 -40.95 -40.95 -40.95 1404 0.013
Adaptive1 100 100 -40.95 -40.95 -40.95 1093 0.013
Adaptive2 100 100 -40.95 -40.95 -40.95 1051 0.013
Adaptive3 100 100 -40.95 -40.95 -40.95 1115 0.012

asaadi 1.2 Oracleupdate 100 100 -38.00 -38.00 -38.00 78 0.010
Oraclefix 100 100 -38.00 -38.00 -38.00 72 0.010
Static 100 100 -38.00 -38.00 -38.00 74 0.009
Death 100 100 -38.00 -38.00 -38.00 222 0.008
Adaptive1 100 100 -38.00 -38.00 -38.00 73 0.009
Adaptive2 100 100 -38.00 -38.00 -38.00 72 0.008
Adaptive3 100 100 -38.00 -38.00 -38.00 73 0.008

asaadi 2.1 Oracleupdate 100 100 694.90 694.97 694.94 8040 0.041
Oraclefix 100 100 694.90 694.97 694.94 1523 0.014
Static 100 100 694.90 694.97 694.94 1804 0.014
Death 100 100 694.90 694.97 694.94 1504 0.013
Adaptive1 100 100 694.90 694.97 694.94 1563 0.014
Adaptive2 100 100 694.90 694.97 694.94 1040 0.012
Adaptive3 100 100 694.90 694.97 694.94 1014 0.011

141

Table 29: Detailed results for the constrained benchmark problems (continued)
Name Penalty Opt Feas fbest fworst fmean evalmean timemean
asaadi 2.2 Oracleupdate 100 100 700.000 700.000 700.000 453 0.010

Oraclefix 100 100 700.000 700.000 700.000 298 0.009
Static 100 100 700.000 700.000 700.000 264 0.009
Death 100 100 700.000 700.000 700.000 344 0.009
Adaptive1 100 100 700.000 700.000 700.000 293 0.010
Adaptive2 100 100 700.000 700.000 700.000 286 0.009
Adaptive3 100 100 700.000 700.000 700.000 266 0.010

asaadi 3.1 Oracleupdate 100 100 37.219 37.223 37.222 22882 0.122
Oraclefix 100 100 37.219 37.223 37.222 16919 0.101
Static 100 100 37.219 37.223 37.222 15591 0.095
Death 0 100 37.280 106.078 57.976 100000 0.555
Adaptive1 100 100 37.220 37.223 37.222 15003 0.118
Adaptive2 100 100 37.220 37.223 37.222 7879 0.056
Adaptive3 100 100 37.219 37.223 37.222 8700 0.059

asaadi 3.2 Oracleupdate 100 100 43.000 43.000 43.000 3558 0.034
Oraclefix 100 100 43.000 43.000 43.000 2565 0.026
Static 100 100 43.000 43.000 43.000 1957 0.021
Death 85 100 43.000 87.000 47.700 29029 0.140
Adaptive1 100 100 43.000 43.000 43.000 1493 0.015
Adaptive2 100 100 43.000 43.000 43.000 1592 0.015
Adaptive3 100 100 43.000 43.000 43.000 2011 0.019

van de Oracleupdate 100 100 1.000 1.000 1.000 10959 0.048
Braak 1 Oraclefix 100 100 1.000 1.000 1.000 12351 0.047

Static 100 100 1.000 1.000 1.000 13943 0.052
Death 31 100 1.000 87271 10520 55029 0.149
Adaptive1 100 100 1.000 1.000 1.000 11395 0.043
Adaptive2 100 100 1.000 1.000 1.000 8796 0.037
Adaptive3 100 100 1.000 1.000 1.000 9333 0.037

van de Oracleupdate 100 100 -2.718 -2.718 -2.718 10125 0.040
Braak 2 Oraclefix 100 100 -2.718 -2.718 -2.718 18095 0.062

Static 100 100 -2.718 -2.718 -2.718 3619 0.019
Death 83 100 -2.718 99.417 5.765 29602 0.075
Adaptive1 100 100 -2.718 -2.718 -2.718 3567 0.020
Adaptive2 100 100 -2.718 -2.718 -2.718 4652 0.023
Adaptive3 100 100 -2.718 -2.718 -2.718 4349 0.021

van de Oracleupdate 99 100 -89.800 -84.667 -89.744 19432 0.074
Braak 3 Oraclefix 98 100 -89.799 -75.817 -89.645 19143 0.067

Static 6 100 -89.800 -75.817 -76.656 66064 0.208
Death 4 100 -89.794 -16.535 -53.856 68646 0.172
Adaptive1 5 100 -89.795 -75.817 -76.529 66704 0.211
Adaptive2 3 100 -89.794 -75.894 -76.311 68369 0.218
Adaptive3 3 100 -89.799 -75.894 -76.311 68066 0.215

nvs01 Oracleupdate 1 16 12.470 282.900 95.185 28134 0.062
Oraclefix 3 100 12.470 301.985 101.652 29425 0.059
Static 4 100 12.470 874.996 106.773 29291 0.059
Death 0 52 16.837 263.712 97.661 30000 0.050
Adaptive1 0 56 16.837 290.365 109.072 30000 0.051
Adaptive2 0 56 16.837 263.712 106.042 30000 0.051
Adaptive3 0 51 16.837 839.336 123.617 30000 0.051

142

Table 30: Detailed results for the constrained benchmark problems (continued)
Name Penalty Opt Feas fbest fworst fmean evalmean timemean
nvs02 Oracleupdate 0 13 5.974 6.457 6.166 80000 0.268

Oraclefix 0 100 5.998 8.008 6.633 80000 0.259
Static 0 100 5.998 8.008 6.633 80000 0.255
Death 0 5 6.107 11.066 8.257 80000 0.156
Adaptive1 0 8 6.107 12.075 8.405 80000 0.186
Adaptive2 0 6 6.107 11.066 7.990 80000 0.174
Adaptive3 0 11 6.107 11.066 7.427 80000 0.207

nvs03 Oracleupdate 100 100 16.000 16.000 16.000 146 0.009
Oraclefix 100 100 16.000 16.000 16.000 269 0.008
Static 100 100 16.000 16.000 16.000 255 0.008
Death 100 100 16.000 16.000 16.000 381 0.010
Adaptive1 100 100 16.000 16.000 16.000 116 0.008
Adaptive2 100 100 16.000 16.000 16.000 228 0.008
Adaptive3 100 100 16.000 16.000 16.000 222 0.008

nvs05 Oracleupdate 0 88 6.008 423.126 13.951 80000 0.309
Oraclefix 0 98 62.933 7303.811 663.450 80000 0.283
Static 0 99 11.805 430.723 115.348 80000 0.276
Death 0 1 40.133 40.133 40.133 80000 0.172
Adaptive1 0 3 101.120 237.182 171.207 80000 0.276
Adaptive2 0 1 176.836 176.836 176.836 80000 0.266
Adaptive3 0 7 18.571 393.291 112.836 80000 0.239

nvs07 Oracleupdate 100 100 4.000 4.000 4.000 792 0.008
Oraclefix 100 100 4.000 4.000 4.000 626 0.009
Static 100 100 4.000 4.000 4.000 708 0.009
Death 100 100 4.000 4.000 4.000 1424 0.010
Adaptive1 100 100 4.000 4.000 4.000 603 0.009
Adaptive2 100 100 4.000 4.000 4.000 814 0.008
Adaptive3 100 100 4.000 4.000 4.000 811 0.011

nvs08 Oracleupdate 100 100 23.450 23.452 23.451 3531 0.014
Oraclefix 100 100 23.450 23.452 23.451 3282 0.014
Static 100 100 23.450 23.452 23.451 3598 0.014
Death 58 100 23.450 25.998 23.684 19944 0.040
Adaptive1 100 100 23.450 23.452 23.451 3247 0.014
Adaptive2 100 100 23.450 23.452 23.451 2791 0.013
Adaptive3 100 100 23.450 23.452 23.451 3602 0.015

nvs10 Oracleupdate 100 100 -310.800 -310.800 -310.800 143 0.008
Oraclefix 100 100 -310.800 -310.800 -310.800 138 0.008
Static 100 100 -310.800 -310.800 -310.800 139 0.008
Death 100 100 -310.800 -310.800 -310.800 46 0.008
Adaptive1 100 100 -310.800 -310.800 -310.800 76 0.008
Adaptive2 100 100 -310.800 -310.800 -310.800 64 0.008
Adaptive3 100 100 -310.800 -310.800 -310.800 97 0.008

nvs11 Oracleupdate 100 100 -431.000 -431.000 -431.000 412 0.010
Oraclefix 100 100 -431.000 -431.000 -431.000 327 0.009
Static 100 100 -431.000 -431.000 -431.000 325 0.009
Death 100 100 -431.000 -431.000 -431.000 70 0.008
Adaptive1 100 100 -431.000 -431.000 -431.000 109 0.009
Adaptive2 100 100 -431.000 -431.000 -431.000 88 0.007
Adaptive3 100 100 -431.000 -431.000 -431.000 129 0.008

143

Table 31: Detailed results for the constrained benchmark problems (continued)
Name Penalty Opt Feas fbest fworst fmean evalmean timemean
nvs12 Oracleupdate 100 100 -481.200 -481.200 -481.200 748 0.009

Oraclefix 100 100 -481.200 -481.200 -481.200 454 0.009
Static 100 100 -481.200 -481.200 -481.200 441 0.009
Death 100 100 -481.200 -481.200 -481.200 95 0.008
Adaptive1 100 100 -481.200 -481.200 -481.200 150 0.008
Adaptive2 100 100 -481.200 -481.200 -481.200 134 0.008
Adaptive3 100 100 -481.200 -481.200 -481.200 171 0.008

nvs13 Oracleupdate 100 100 -585.200 -585.200 -585.200 1871 0.014
Oraclefix 100 100 -585.200 -585.200 -585.200 1232 0.012
Static 100 100 -585.200 -585.200 -585.200 956 0.011
Death 100 100 -585.200 -585.200 -585.200 425 0.009
Adaptive1 100 100 -585.200 -585.200 -585.200 434 0.010
Adaptive2 100 100 -585.200 -585.200 -585.200 481 0.009
Adaptive3 100 100 -585.200 -585.200 -585.200 471 0.010

nvs14 Oracleupdate 6 98 -0.404 -0.377 -0.395 75992 0.252
Oraclefix 9 100 -0.404 -0.389 -0.400 76032 0.245
Static 9 100 -0.404 -0.389 -0.400 76032 0.245
Death 0 46 -0.401 -0.372 -0.389 80000 0.154
Adaptive1 0 49 -0.401 -0.372 -0.390 80000 0.167
Adaptive2 0 47 -0.401 -0.372 -0.389 80000 0.157
Adaptive3 4 59 -0.404 -0.372 -0.394 77235 0.188

nvs15 Oracleupdate 100 100 1.000 1.000 1.000 319 0.009
Oraclefix 100 100 1.000 1.000 1.000 286 0.008
Static 100 100 1.000 1.000 1.000 295 0.008
Death 100 100 1.000 1.000 1.000 928 0.009
Adaptive1 100 100 1.000 1.000 1.000 510 0.009
Adaptive2 100 100 1.000 1.000 1.000 409 0.009
Adaptive3 100 100 1.000 1.000 1.000 236 0.009

nvs17 Oracleupdate 95 100 -1100.400 -1099.000 -1100.330 16728 0.079
Oraclefix 100 100 -1100.400 -1100.400 -1100.400 3133 0.022
Static 100 100 -1100.400 -1100.400 -1100.400 2453 0.019
Death 100 100 -1100.400 -1100.400 -1100.400 2681 0.018
Adaptive1 100 100 -1100.400 -1100.400 -1100.400 1756 0.014
Adaptive2 100 100 -1100.400 -1100.400 -1100.400 2083 0.017
Adaptive3 100 100 -1100.400 -1100.400 -1100.400 1582 0.015

nvs18 Oracleupdate 100 100 -778.400 -778.400 -778.400 6535 0.031
Oraclefix 100 100 -778.400 -778.400 -778.400 1824 0.014
Static 100 100 -778.400 -778.400 -778.400 1422 0.013
Death 100 100 -778.400 -778.400 -778.400 966 0.010
Adaptive1 100 100 -778.400 -778.400 -778.400 814 0.011
Adaptive2 100 100 -778.400 -778.400 -778.400 1010 0.012
Adaptive3 100 100 -778.400 -778.400 -778.400 783 0.011

nvs19 Oracleupdate 99 100 -1098.400 -1097.600 -1098.392 22328 0.118
Oraclefix 100 100 -1098.400 -1098.400 -1098.400 4864 0.032
Static 100 100 -1098.400 -1098.400 -1098.400 4243 0.028
Death 100 100 -1098.400 -1098.400 -1098.400 3347 0.024
Adaptive1 100 100 -1098.400 -1098.400 -1098.400 3180 0.023
Adaptive2 100 100 -1098.400 -1098.400 -1098.400 3252 0.023
Adaptive3 100 100 -1098.400 -1098.400 -1098.400 3174 0.022

144

Table 32: Detailed results for the constrained benchmark problems (continued)
Name Penalty Opt Feas fbest fworst fmean evalmean timemean
nvs20 Oracleupdate 2 100 230.94 307.13 262.93 158944 1.140

Oraclefix 0 100 231.18 259.88 242.66 160000 1.121
Static 3 100 230.93 259.24 240.98 157726 1.139
Death 0 100 242.73 493.01 319.40 160000 0.944
Adaptive1 4 100 230.93 259.21 240.24 158479 1.146
Adaptive2 14 100 230.94 244.60 239.29 153730 1.123
Adaptive3 2 100 230.94 244.50 240.87 159412 1.158

nvs21 Oracleupdate 88 100 -5.686 -5.265 -5.652 13667 0.034
Oraclefix 96 100 -5.686 -5.096 -5.665 9470 0.025
Static 99 100 -5.686 -5.096 -5.679 8054 0.022
Death 95 100 -5.686 -5.096 -5.661 8880 0.024
Adaptive1 98 100 -5.686 -5.096 -5.675 7328 0.021
Adaptive2 40 100 -5.686 -0.216 -5.177 19611 0.044
Adaptive3 67 100 -5.686 -4.824 -5.492 16468 0.038

nvs22 Oracleupdate 89 98 6.058 139.337 7.864 30701 0.122
Oraclefix 0 100 8.221 597.885 181.33 80000 0.291
Static 0 100 6.828 513.734 92.341 80000 0.279
Death 0 7 8.367 103.916 42.941 80000 0.176
Adaptive1 0 9 8.367 97.518 31.661 80000 0.196
Adaptive2 0 8 8.367 131.718 58.004 80000 0.186
Adaptive3 0 12 10.481 135.203 49.820 80000 0.223

nvs23 Oracleupdate 100 100 -1125.2 -1125.2 -1125.2 14239 0.092
Oraclefix 100 100 -1125.2 -1125.2 -1125.2 2787 0.025
Static 100 100 -1125.2 -1125.2 -1125.2 1918 0.019
Death 100 100 -1125.2 -1125.2 -1125.2 4365 0.031
Adaptive1 100 100 -1125.2 -1125.2 -1125.2 1673 0.017
Adaptive2 100 100 -1125.2 -1125.2 -1125.2 1874 0.019
Adaptive3 100 100 -1125.2 -1125.2 -1125.2 1997 0.020

nvs24 Oracleupdate 48 100 -1033.2 -1030.8 -1032.4 71419 0.489
Oraclefix 98 100 -1033.2 -1032.0 -1033.1 21248 0.152
Static 100 100 -1033.2 -1033.2 -1033.2 16061 0.115
Death 99 100 -1033.2 -1032.0 -1033.1 17360 0.119
Adaptive1 99 100 -1033.2 -1032.0 -1033.1 16065 0.115
Adaptive2 100 100 -1033.2 -1033.2 -1033.2 13610 0.098
Adaptive3 100 100 -1033.2 -1033.2 -1033.2 16820 0.121

duran/ Oracleupdate 100 100 6.009 6.010 6.010 10001 0.040
grossmann 1 Oraclefix 100 100 6.009 6.010 6.010 3203 0.018

Static 100 100 6.009 6.010 6.010 4767 0.022
Death 0 100 7.416 9.996 9.970 60000 0.167
Adaptive1 100 100 6.008 6.010 6.010 4571 0.021
Adaptive2 100 100 6.009 6.010 6.010 3628 0.019
Adaptive3 100 100 6.008 6.010 6.010 4276 0.021

duran/ Oracleupdate 27 97 73.030 145.56 80.393 95846 0.472
grossmann 2 Oraclefix 0 100 73.071 86.112 76.253 110000 0.542

Static 1 100 73.038 86.111 78.342 109352 0.527
Death 0 8 108.695 112.06 110.90 110000 0.299
Adaptive1 1 100 73.042 95.205 78.316 109363 0.527
Adaptive2 3 100 73.042 86.111 79.492 108519 0.523
Adaptive3 16 100 73.029 95.205 77.456 104745 0.505

145

Table 33: Detailed results for the constrained benchmark problems (continued)
Name Penalty Opt Feas fbest fworst fmean evalmean timemean
duran/ Oracleupdate 16 64 68.006 98.877 70.987 154559 1.103
grossmann 3 Oraclefix 0 100 68.078 85.499 76.835 170000 1.259

Static 0 100 69.032 99.589 79.114 170000 1.220
Death 0 71 78.265 126.354 104.944 170000 0.690
Adaptive1 0 100 68.277 108.683 84.780 170000 1.227
Adaptive2 0 100 68.120 108.683 79.699 170000 1.228
Adaptive3 5 100 68.011 99.589 77.588 166159 1.194

floudas 1 Oracleupdate 84 100 7.667 8.740 7.730 19059 0.059
Oraclefix 87 100 7.667 7.931 7.701 16952 0.050
Static 78 100 7.667 7.931 7.725 21943 0.063
Death 60 100 7.667 8.240 7.791 21837 0.045
Adaptive1 61 100 7.667 8.240 7.788 24022 0.056
Adaptive2 56 100 7.667 8.240 7.802 26920 0.064
Adaptive3 59 100 7.667 8.240 7.794 23591 0.056

floudas 2 Oracleupdate 100 100 1.076 1.077 1.076 2693 0.013
Oraclefix 100 100 1.076 1.077 1.077 3362 0.014
Static 100 100 1.076 1.077 1.077 2941 0.013
Death 84 100 1.076 1.250 1.103 12826 0.027
Adaptive1 96 100 1.076 1.250 1.082 4682 0.015
Adaptive2 100 100 1.076 1.077 1.076 2414 0.013
Adaptive3 100 100 1.076 1.077 1.077 2562 0.013

floudas 3 Oracleupdate 100 100 4.579 4.580 4.580 3586 0.020
Oraclefix 100 100 4.579 4.580 4.580 3628 0.020
Static 100 100 4.579 4.580 4.580 2127 0.016
Death 100 100 4.579 4.580 4.580 7932 0.031
Adaptive1 100 100 4.579 4.580 4.580 2254 0.015
Adaptive2 100 100 4.579 4.580 4.580 2123 0.014
Adaptive3 100 100 4.579 4.580 4.580 2341 0.015

floudas 4 Oracleupdate 0 21 -0.875 -0.602 -0.735 110000 0.520
Oraclefix 0 100 -0.884 -0.627 -0.726 110000 0.501
Static 0 100 -0.838 -0.639 -0.721 110000 0.503
Death 0 85 -0.804 -0.602 -0.642 110000 0.283
Adaptive1 0 85 -0.804 -0.602 -0.643 110000 0.308
Adaptive2 0 85 -0.804 -0.602 -0.644 110000 0.297
Adaptive3 0 89 -0.838 -0.602 -0.661 110000 0.334

floudas 5 Oracleupdate 100 100 31.000 31.000 31.000 23 0.008
Oraclefix 100 100 31.000 31.000 31.000 37 0.008
Static 100 100 31.000 31.000 31.000 36 0.008
Death 100 100 31.000 31.000 31.000 79 0.008
Adaptive1 100 100 31.000 31.000 31.000 35 0.007
Adaptive2 100 100 31.000 31.000 31.000 35 0.008
Adaptive3 100 100 31.000 31.000 31.000 35 0.008

floudas 6 Oracleupdate 100 100 -170000 -169983 -169993 916 0.010
Oraclefix 100 100 -170000 -169983 -169991 382 0.009
Static 100 100 -170000 -169983 -169989 539 0.009
Death 100 100 -170000 -169983 -169990 986 0.010
Adaptive1 100 100 -170000 -169983 -169990 471 0.009
Adaptive2 100 100 -170000 -169983 -169992 476 0.008
Adaptive3 100 100 -170000 -169983 -169990 500 0.008

146

Table 34: Detailed results for the constrained benchmark problems (continued)
Name Penalty Opt Feas fbest fworst fmean evalmean timemean
ST E36 Oracleupdate 0 100 -243.85 -147.00 -184.57 20000 0.045

Oraclefix 0 100 -243.85 -198.79 -224.98 20000 0.043
Static 0 100 -243.85 -198.79 -225.35 20000 0.042
Death 0 100 -237.68 -166.50 -177.55 20000 0.040
Adaptive1 0 100 -237.68 -166.50 -178.21 20000 0.040
Adaptive2 0 99 -237.68 -166.50 -196.98 20000 0.042
Adaptive3 0 100 -237.68 -166.50 -180.75 20000 0.040

ST E38 Oracleupdate 100 100 7196.87 7198.43 7197.74 4156 0.018
Oraclefix 100 100 7197.08 7198.44 7198.16 10413 0.029
Static 100 100 7197.06 7198.44 7198.13 5664 0.020
Death 0 100 7200.07 7446.94 7347.08 40000 0.087
Adaptive1 100 100 7196.99 7198.44 7198.13 4633 0.019
Adaptive2 100 100 7197.04 7198.43 7197.94 2185 0.013
Adaptive3 100 100 7196.95 7198.44 7197.97 2601 0.013

ST E40 Oracleupdate 74 100 28.243 50.971 28.902 20837 0.053
Oraclefix 16 100 28.243 33.485 28.956 36303 0.080
Static 16 100 28.243 33.485 28.952 36303 0.081
Death 6 100 28.243 46.556 33.970 37726 0.068
Adaptive1 6 100 28.243 46.556 32.449 38028 0.072
Adaptive2 6 100 28.243 46.556 33.840 37724 0.070
Adaptive3 11 100 28.243 46.556 31.240 37250 0.075

ST MIQP1 Oracleupdate 100 100 281.0 281.0 281.0 25 0.008
Oraclefix 100 100 281.0 281.0 281.0 23 0.008
Static 100 100 281.0 281.0 281.0 22 0.008
Death 100 100 281.0 281.0 281.0 45 0.008
Adaptive1 100 100 281.0 281.0 281.0 23 0.009
Adaptive2 100 100 281.0 281.0 281.0 20 0.009
Adaptive3 100 100 281.0 281.0 281.0 22 0.007

ST MIQP2 Oracleupdate 91 92 2.000 5.000 2.033 1600 0.012
Oraclefix 90 92 2.000 7.000 2.087 1659 0.011
Static 92 96 2.000 24.000 2.521 2940 0.014
Death 18 95 2.000 7.000 4.453 36662 0.066
Adaptive1 100 100 2.000 2.000 2.000 357 0.009
Adaptive2 100 100 2.000 2.000 2.000 323 0.008
Adaptive3 100 100 2.000 2.000 2.000 431 0.009

ST MIQP3 Oracleupdate 50 100 -6.000 0.000 -3.060 11356 0.022
Oraclefix 52 100 -6.000 0.000 -3.240 11759 0.026
Static 71 100 -6.000 0.000 -4.260 6660 0.017
Death 0 100 0.000 0.000 0.000 20000 0.035
Adaptive1 72 100 -6.000 0.000 -4.320 8009 0.020
Adaptive2 69 100 -6.000 0.000 -4.140 10253 0.023
Adaptive3 71 100 -6.000 0.000 -4.260 10733 0.022

ST MIQP4 Oracleupdate 63 100 -4574.04 -4.000 -4355.22 37472 0.093
Oraclefix 0 100 -4573.17 -2788.50 -4302.06 60000 0.142
Static 3 100 -4573.61 -4508.46 -4566.23 58954 0.163
Death 0 100 0.000 0.000 0.000 60000 0.095
Adaptive1 4 100 -4574.01 -4.000 -1310.77 57954 0.133
Adaptive2 100 100 -4573.97 -4573.54 -4573.67 9351 0.032
Adaptive3 97 100 -4574.03 -4573.38 -4573.69 7507 0.027

147

Table 35: Detailed results for the constrained benchmark problems (continued)
Name Penalty Opt Feas fbest fworst fmean evalmean timemean
ST MIQP5 Oracleupdate 18 100 -333.8 -0.026 -89.37 65417 0.222

Oraclefix 0 100 -328.1 -159.4 -253.6 70000 0.218
Static 0 100 -320.4 -132.1 -238.4 70000 0.216
Death 0 100 -2.947 -0.878 -1.389 70000 0.148
Adaptive1 0 100 -303.7 -7.087 -21.99 70000 0.211
Adaptive2 0 100 -325.0 -8.102 -185.5 70000 0.221
Adaptive3 2 100 -333.8 -161.9 -292.8 69835 0.216

ST TEST1 Oracleupdate 100 100 0.000 0.000 0.000 13 0.008
Oraclefix 100 100 0.000 0.000 0.000 14 0.008
Static 100 100 0.000 0.000 0.000 13 0.008
Death 100 100 0.000 0.000 0.000 8 0.008
Adaptive1 100 100 0.000 0.000 0.000 13 0.008
Adaptive2 100 100 0.000 0.000 0.000 13 0.007
Adaptive3 100 100 0.000 0.000 0.000 13 0.007

ST TEST2 Oracleupdate 97 97 -9.250 -9.250 -9.250 281 0.009
Oraclefix 95 95 -9.250 -9.250 -9.250 1047 0.011
Static 100 100 -9.250 -9.250 -9.250 89 0.008
Death 0 0 na na na na na
Adaptive1 100 100 -9.250 -9.250 -9.250 476 0.009
Adaptive2 100 100 -9.250 -9.250 -9.250 355 0.008
Adaptive3 100 100 -9.250 -9.250 -9.250 451 0.010

ST TEST4 Oracleupdate 94 100 -7.000 -5.000 -6.930 5631 0.024
Oraclefix 100 100 -7.000 -7.000 -7.000 937 0.010
Static 100 100 -7.000 -7.000 -7.000 729 0.010
Death 0 0 na na na na na
Adaptive1 100 100 -7.000 -7.000 -7.000 860 0.011
Adaptive2 100 100 -7.000 -7.000 -7.000 803 0.012
Adaptive3 100 100 -7.000 -7.000 -7.000 871 0.011

ST TEST5 Oracleupdate 100 100 -110.000 -110.000 -110.000 257 0.009
Oraclefix 100 100 -110.000 -110.000 -110.000 194 0.008
Static 100 100 -110.000 -110.000 -110.000 221 0.009
Death 100 100 -110.000 -110.000 -110.000 597 0.010
Adaptive1 100 100 -110.000 -110.000 -110.000 201 0.009
Adaptive2 100 100 -110.000 -110.000 -110.000 218 0.009
Adaptive3 100 100 -110.000 -110.000 -110.000 214 0.008

ST TEST6 Oracleupdate 100 100 471.000 471.000 471.000 367 0.010
Oraclefix 100 100 471.000 471.000 471.000 284 0.009
Static 100 100 471.000 471.000 471.000 359 0.009
Death 100 100 471.000 471.000 471.000 2552 0.017
Adaptive1 100 100 471.000 471.000 471.000 341 0.009
Adaptive2 100 100 471.000 471.000 471.000 275 0.010
Adaptive3 100 100 471.000 471.000 471.000 294 0.010

ST TEST8 Oracleupdate 18 94 -29605 20019 -28364 216275 2.147
Oraclefix 0 100 -12747 41715 9559 240000 2.282
Static 0 100 -16953 28673 5143 240000 2.274
Death 1 98 -29605 29383 -11421 239486 1.145
Adaptive1 3 100 -29605 14247 -22419 237622 1.474
Adaptive2 3 100 -29605 -7997 -22628 238601 1.413
Adaptive3 4 100 -29605 19728 -24619 235769 1.833

148

Table 36: Detailed results for the constrained benchmark problems (continued)
Name Penalty Opt Feas fbest fworst fmean evalmean timemean
ST TEST Oracleupdate 96 100 -12.812 -12.771 -12.810 41437 0.171
GR1 Oraclefix 100 100 -12.812 -12.810 -12.811 8059 0.042

Static 100 100 -12.812 -12.810 -12.811 7315 0.038
Death 100 100 -12.812 -12.810 -12.811 6580 0.035
Adaptive1 100 100 -12.812 -12.810 -12.811 7301 0.037
Adaptive2 100 100 -12.812 -12.810 -12.811 4676 0.027
Adaptive3 100 100 -12.812 -12.810 -12.811 6209 0.033

ST TEST Oracleupdate 5 100 -20.590 -20.220 -20.436 196512 1.567
GR3 Oraclefix 16 100 -20.590 -20.467 -20.554 186596 1.567

Static 73 100 -20.590 -20.570 -20.585 112338 0.905
Death 26 100 -20.590 -20.455 -20.562 164749 1.342
Adaptive1 76 100 -20.590 -20.570 -20.586 110635 0.891
Adaptive2 97 100 -20.590 -20.570 -20.590 66634 0.544
Adaptive3 73 100 -20.590 -20.570 -20.585 113526 0.914

ST TESTPH4 Oracleupdate 100 100 -80.500 -80.500 -80.500 207 0.008
Oraclefix 100 100 -80.500 -80.500 -80.500 213 0.008
Static 100 100 -80.500 -80.500 -80.500 220 0.009
Death 100 100 -80.500 -80.500 -80.500 84 0.008
Adaptive1 100 100 -80.500 -80.500 -80.500 114 0.008
Adaptive2 100 100 -80.500 -80.500 -80.500 82 0.007
Adaptive3 100 100 -80.500 -80.500 -80.500 158 0.008

TLN2 Oracleupdate 100 100 2.300 2.300 2.300 614 0.010
Oraclefix 100 100 2.300 2.300 2.300 660 0.010
Static 100 100 2.300 2.300 2.300 517 0.010
Death 100 100 2.300 2.300 2.300 4767 0.020
Adaptive1 100 100 2.300 2.300 2.300 525 0.009
Adaptive2 100 100 2.300 2.300 2.300 2213 0.014
Adaptive3 100 100 2.300 2.300 2.300 476 0.011

ALAN Oracleupdate 3 36 2.924 4.212 3.032 77063 0.266
Oraclefix 1 100 2.925 4.218 3.419 79436 0.259
Static 1 100 2.925 4.217 3.413 79436 0.260
Death 0 3 2.930 2.989 2.967 80000 0.141
Adaptive1 0 6 2.930 4.208 3.229 80000 0.195
Adaptive2 0 4 2.930 2.996 2.974 80000 0.172
Adaptive3 0 10 2.930 4.219 3.246 80000 0.209

MEANVARX Oracleupdate 1 9 14.342 17.449 15.133 348623 4.194
Oraclefix 0 84 15.155 26.652 19.879 350000 4.595
Static 0 87 15.152 26.153 20.002 350000 4.588
Death 0 0 na na na na na
Adaptive1 0 0 na na na na na
Adaptive2 0 0 na na na na na
Adaptive3 0 4 16.340 24.761 21.509 350000 4.344

OAER Oracleupdate 36 91 -1.924 3.492 -0.845 70105 0.288
Oraclefix 1 100 -1.923 -0.001 -0.492 89797 0.340
Static 0 100 -1.913 -0.001 -0.408 90000 0.340
Death 1 14 -1.924 -0.001 -0.633 87904 0.250
Adaptive1 0 100 -1.595 -0.001 -0.022 90000 0.363
Adaptive2 2 100 -1.923 -0.001 -0.604 89313 0.342
Adaptive3 1 100 -1.923 -0.001 -0.526 89681 0.340

149

Table 37: Detailed results for the constrained benchmark problems (continued)
Name Penalty Opt Feas fbest fworst fmean evalmean timemean
MIP-EX Oracleupdate 100 100 3.500 3.500 3.500 4324 0.021

Oraclefix 100 100 3.500 3.500 3.500 2366 0.013
Static 100 100 3.500 3.500 3.500 2895 0.015
Death 100 100 3.500 3.500 3.500 919 0.009
Adaptive1 100 100 3.500 3.500 3.500 2392 0.014
Adaptive2 100 100 3.500 3.500 3.500 1431 0.012
Adaptive3 100 100 3.500 3.500 3.500 1560 0.011

150

Appendix B

MIDACO Performance on 100 MINLP Benchmarks

Individual results by MIDACO for a test run on the set of 100 non-convex MINLP bench-
marks provided by Schittkowski [40] are reported. Table 38 lists the individual benchmark
names as reported in [40] and addresses a library number to them.

Table 38: Benchmark names with corresponding library number
1 MITP1 26 NVS09 51 FLOUDAS5 76 ST TEST2
2 QIP1 27 NVS10 52 FLOUDAS6 77 ST TEST3
3 MITP2 28 NVS11 53 OAER 78 ST TEST4
4 ASAADI11 29 NVS12 54 SPRING 79 ST TEST5
5 ASAADI12 30 NVS13 55 GEAR 80 ST TEST6
6 ASAADI21 31 NVS14 56 DAKOTA 81 ST TEST8
7 ASAADI22 32 NVS15 57 GEAR4 82 ST TESTGR1
8 ASAADI31 33 NVS16 58 GEAR3 83 ST TESTGR3
9 ASAADI32 34 NVS17 59 EX1252A 84 ST TESTPH4

10 DIRTY 35 NVS18 60 EX1263A 85 TLN2
11 BRAAK1 36 NVS19 61 EX1264A 86 TLN4
12 BRAAK2 37 NVS20 62 EX1265A 87 TLN5
13 BRAAK3 38 NVS21 63 EX1266A 88 TLN6
14 DEX2 39 NVS22 64 DU OPT5 89 PROB02
15 CROP5 40 NVS23 65 DU OPT 90 TLOSS
16 TP83 41 NVS24 66 ST E32 91 TLTR
17 WP02 42 GEAR3A 67 ST E36 92 ALAN
18 NVS01 43 WINDFAC 68 ST E38 93 MEANVARX
19 NVS02 44 DG1 69 ST E40 94 HMITTELMANN
20 NVS03 45 DG2 70 ST MIQP1 95 MIP EX
21 NVS04 46 DG3 71 ST MIQP2 96 MGRID CYCLES1
22 NVS05 47 FLOUDAS1 72 ST MIQP3 97 MGRID CYCLES2
23 NVS06 48 FLOUDAS2 73 ST MIQP4 98 CROP20
24 NVS07 49 FLOUDAS3 74 ST MIQP5 99 CROP50
25 NVS08 50 FLOUDAS4 75 ST TEST1 100 CROP100

Based on the results of Table 5.5 (where 10 different runs on the full library where per-

151

formed) the random Seed 4.2 was fixed to 5, which represents a good MIDACO perfor-
mance. A maximal time budget of 300 seconds (5 minutes) has been assigned (instead of
1000 seconds like in Section 5.2.2). Besides the cpu time budget, the success criteria (5.2)
in finding a global optimal solution was applied with ε = 0.01 and acc = 0.0001. Table
39 lists the individual results, the abbreviations used are as follows:

Flag - Symbol indicating a local (-), false (x) or better (o) solution
Nr. - MINLP problem number from the library
Eval - Number of function evaluation used by MIDACO
Time - Cpu time in seconds used by MIDACO
n - Number of decision variables in total of the problem
nint - Number of integer decision variables of the problem
m - Number of constraints in total of the problem
meq - Number of equality constraints of the problem
f(x∗, y∗) - Global (or best known) optimal objective function value
f(x, y) - Best (feasible) objective function value obtained by MIDACO
V iolation - Constraint violation measured as L∞-norm over all violations

Table 39: Individual MIDACO results on 100 MINLP problems
Flag Nr. Eval T ime n nint m meq f(x∗, y∗) f(x, y) V iolation

1 3705 0.0 5 3 1 0 -10009.6900 -9916.3953 0.00000
2 6 0.0 4 4 4 0 -20.0000 -20.0000 0.00000
3 20727 0.0 5 3 7 0 3.5000 3.5026 0.00000
4 13798 0.0 4 3 3 0 -40.9566 -40.6317 0.00000
5 59 0.0 4 4 3 0 -38.0000 -38.0000 0.00000
6 4242 0.0 7 4 4 0 694.9027 696.3917 0.00000
7 89 0.0 7 7 4 0 700.0000 700.0000 0.00000
8 24443 0.0 10 6 8 0 37.2195 37.5528 0.00000
9 717 0.0 10 10 8 0 43.0000 43.0000 0.00000

10 80 0.0 25 13 10 0 -304723942 -301895650 0.00000
11 31677 0.1 7 3 2 0 1.0000 1.0059 0.00000
12 27922 0.0 7 3 4 0 -2.7183 -2.6941 0.00000
13 96735 0.1 7 3 4 0 -8980002 -8948767 0.00000
14 1 0.0 2 2 2 0 -56.9375 -56.9375 0.00000
15 228 0.0 5 5 3 0 0.1004 0.1004 0.00000
16 6247 0.0 5 2 6 0 -30665.5 -30372.7 0.00000
17 13 0.0 2 1 2 0 -2.4444 -2.4368 0.00000
18 472043 0.7 3 2 3 1 12.4697 12.4697 0.00007
19 465482 0.6 8 5 3 3 5.9642 6.0164 0.00006
20 35 0.0 2 2 2 0 16.0000 16.0000 0.00000
21 58 0.0 2 2 0 0 0.7200 0.7200 0.00000

- 22 245937264 300.0 8 2 9 4 5.4709 29.4678 0.00008
23 43 0.0 2 2 0 0 1.7703 1.7703 0.00000
24 311 0.0 3 3 2 0 4.0000 4.0000 0.00000
25 8188 0.0 3 2 3 0 23.4497 23.6467 0.00000
26 148 0.0 10 10 0 0 -43.1343 -43.1343 0.00000
27 41 0.0 2 2 2 0 -310.8000 -310.8000 0.00000
28 113 0.0 3 3 3 0 -431.0000 -427.8000 0.00000
29 119 0.0 4 4 4 0 -481.2000 -481.2000 0.00000
30 159 0.0 5 5 5 0 -585.2000 -582.8000 0.00000

152

Table 40: Individual MIDACO results on 100 MINLP problems (continued)
Flag Nr. Eval T ime n nint m meq f(x∗, y∗) f(x, y) V iolation

31 41158 0.1 8 5 3 3 -40358.1500 -40256.3555 0.00004
32 157 0.0 3 3 1 0 1.0000 1.0000 0.00000
33 17 0.0 2 2 0 0 0.7031 0.7031 0.00000
34 278 0.0 7 7 7 0 -1100.4000 -1093.0000 0.00000
35 165 0.0 6 6 6 0 -778.4000 -772.4000 0.00000
36 259 0.0 8 8 8 0 -1098.4000 -1088.6000 0.00000
37 197257 0.4 16 5 8 0 230.9222 233.1332 0.00000
38 5690 0.0 3 2 2 0 -5.6848 -5.6746 0.00000
39 533239 0.7 8 4 9 4 6.0582 6.0582 0.00008
40 620 0.0 9 9 9 0 -1125.2000 -1114.4000 0.00000
41 405 0.0 10 10 10 0 -1033.2000 -1023.0000 0.00000
42 70829 0.1 8 4 4 4 1.0000 1.0024 0.00002
43 11231785 18.5 14 3 13 13 0.2545 0.2543 0.00008
44 79347 0.1 6 3 6 0 6.0097 6.0536 0.00000
45 40632 0.1 11 5 14 1 73.0357 73.7594 0.00008
46 149590 0.3 17 8 23 2 68.0100 68.6351 0.00008
47 185537 0.2 5 3 5 2 7.6672 7.6672 0.00008
48 30249 0.0 3 1 3 0 1.0765 1.0820 0.00009
49 197477 0.2 7 4 9 0 4.5796 4.6250 0.00000
50 13470477 18.7 11 8 7 3 -0.9435 -0.9435 0.00008
51 150 0.0 2 2 4 0 31.0000 31.0000 0.00000
52 1222 0.0 2 1 3 0 -17.0000 -16.8306 0.00000
53 126780 0.2 9 3 7 3 -1.9231 -1.9191 0.00004
54 1204227 2.3 18 12 8 5 0.8462 0.8436 0.00009
55 3 0.0 4 4 0 0 1.0000 1.0021 0.00000
56 13930 0.0 4 2 2 0 1.3634 1.3726 0.00000
57 11501 0.0 6 4 1 1 1.0000 1.0003 0.00007
58 70829 0.1 8 4 4 4 1.0000 1.0024 0.00002

- 59 120829756 300.0 24 9 34 13 128918.0 134407.2 0.00009
60 6119043 18.5 24 24 35 0 19.6000 19.6000 0.00000
61 6431077 19.3 24 24 35 0 8.6000 8.6000 0.00000
62 40895454 146.9 35 35 44 0 10.3000 10.3000 0.00000
63 5975068 23.9 48 48 53 0 16.3000 16.3000 0.00000
64 184918 1.1 20 13 9 0 8.4806 8.5625 0.00000
65 206575 1.7 20 13 9 0 3.5392 3.5501 0.00000

x 66 87406151 300.0 35 19 18 17 -1.4304 -1.4365 0.02039
67 69575 0.1 2 1 2 1 -246.0000 -243.8568 0.00003
68 3718 0.0 4 2 3 0 7197.7271 7203.1783 0.00000
69 15886 0.0 4 3 5 1 28.2426 28.4142 0.00003
70 28 0.0 5 5 1 0 281.0000 281.0000 0.00000
71 4628 0.0 4 4 3 0 2.0000 2.0000 0.00000
72 21236 0.0 2 2 1 0 -6.0000 -6.0000 0.00000
73 50668 0.1 6 3 4 0 -4574.0000 -4532.5531 0.00000
74 205239 0.3 7 2 13 0 -333.8900 -333.7328 0.00009
75 111 0.0 5 5 1 0 -4500.0000 -4497.5000 0.00000
76 267 0.0 6 6 2 0 -9.2500 -9.2500 0.00000
77 116161 0.3 13 13 10 0 -7.0000 -7.0000 0.00000
78 70826 0.1 6 6 5 0 -7.0000 -7.0000 0.00000
79 471 0.0 10 10 11 0 -110.0000 -110.0000 0.00000
80 96 0.0 10 10 5 0 471.0000 471.0000 0.00000

153

Table 41: Individual MIDACO results on 100 MINLP problems (continued)
Flag Nr. Eval T ime n nint m meq f(x∗, y∗) f(x, y) V iolation

81 343156 1.0 24 24 20 0 -29605.0 -29311.0 0.00000
82 3139 0.0 10 10 5 0 -12.8116 -12.6946 0.00000
83 123064 0.3 20 20 20 0 -20.5900 -20.3932 0.00000
84 144 0.0 3 3 10 0 -80.5000 -80.5000 0.00000
85 78 0.0 8 8 12 0 2.3000 2.3000 0.00000
86 3236690 9.3 24 24 24 0 8.3000 8.3000 0.00000
87 15715534 53.8 35 35 30 0 10.3000 10.4000 0.00000
88 26157808 97.3 48 48 36 0 14.6000 14.7000 0.00000
89 7268 0.0 6 6 8 0 112235.0 112235.0 0.00000
90 4585740 18.4 48 48 53 0 16.3000 16.3000 0.00000
91 398513 1.6 48 48 54 0 48.0667 48.0667 0.00000
92 306034 0.4 8 4 7 2 2.9250 2.9262 0.00003
93 3132273 10.9 35 14 44 8 14.1897 14.3309 0.00009
94 232 0.0 16 16 7 0 13.0000 13.0000 0.00000
95 24412 0.0 5 3 7 0 3.5000 3.5177 0.00000
96 94 0.0 5 5 1 0 8.0000 8.0000 0.00000
97 38993 0.1 10 10 1 0 300.0000 302.0000 0.00000
98 81355 0.4 20 20 3 0 0.1318 0.1329 0.00000
99 129314 1.4 50 50 3 0 0.4052 0.4090 0.00000

100 599873 12.1 100 100 3 0 1.0973 1.0975 0.00000

Table 42: Summary of results presented in Table 39
Global optimal Solutions : 97
Feasible Solutions : 99
Local Solution (-) : 2
False Solution (x) : 1
Average Evaluation : 1485525
Average Time : 4.82
Total Time : 1363.2 [Hour: 0, Min:22, Sec:43]

154

Appendix C

BONMIN, COUENNE and MIDACO on GAMS Benchmarks

Individual results by the MINLP solvers BONMIN [6], COUENNE [4] and MIDACO
(version 2.0) for a set of 66 MINLP problems form the GAMS MINLPlib [22] are presented.
A maximal cpu time budget of 300 seconds has been applied to all solvers for each instance.
In case of MIDACO the automatic stopping criteria (see Section 4.2) was activated (using
Autostop = 50). For BONMIN and COUENNE only one test run for every problem was
performed, using the pre-defined starting point from the GAMS MINLPlib. MIDACO
was tested 10 times with a different random seed on every instance. Therefore in case
of MIDACO the number of global optimal (Optimal) and feasible (Feasible) solutions is
reported as a fraction, where the numerator denotes the number of successful runs out of
all 10 runs, for every problem. In case BONMIN and COUENNE did not reach the global
optimal solution on an instance, the sub-optimal objective function value is reported in
brackets. More details on the individual problems (in esp. the global optimal objective
function value) can be found in Table 39. A summary of the individual results presented
in Table 43 can be found in Section 5.3 Table 5.6.

155

Table 43: Individual results by BONMIN, COUENNE and MIDACO
Problem Solver Optimal Feasible T ime
NVS01 BONMIN Yes Yes 0.79

COUENNE No (12.8817) Yes 0.45
MIDACO 9/10 10/10 0.90

NVS02 BONMIN Yes Yes 0.81
COUENNE Yes Yes 0.05
MIDACO 10/10 10/10 4.83

NVS03 BONMIN Yes Yes 0.47
COUENNE Yes Yes 0.03
MIDACO 10/10 10/10 0.09

NVS04 BONMIN Yes Yes 0.55
COUENNE Yes Yes 0.14
MIDACO 10/10 10/10 0.08

NVS05 BONMIN Yes Yes 3.25
COUENNE Yes Yes 39.11
MIDACO 0/10 10/10 290.37

NVS06 BONMIN Yes Yes 0.20
COUENNE Yes Yes 0.03
MIDACO 10/10 10/10 0.11

NVS07 BONMIN Yes Yes 0.19
COUENNE Yes Yes 0.06
MIDACO 10/10 10/10 0.17

NVS08 BONMIN Yes Yes 0.29
COUENNE No (29.0) Yes 0.08
MIDACO 10/10 10/10 0.60

NVS09 BONMIN Yes Yes 0.11
COUENNE Yes Yes 0.12
MIDACO 10/10 10/10 0.52

NVS10 BONMIN Yes Yes 0.17
COUENNE Yes Yes 0.08
MIDACO 10/10 10/10 0.09

NVS11 BONMIN Yes Yes 0.17
COUENNE No (-426.6) Yes 0.08
MIDACO 10/10 10/10 0.15

NVS12 BONMIN Yes Yes 0.19
COUENNE No (-473.2) Yes 0.42
MIDACO 10/10 10/10 0.21

NVS13 BONMIN Yes Yes 0.27
COUENNE Yes Yes 1.32
MIDACO 10/10 10/10 0.27

NVS14 BONMIN Yes Yes 0.89
COUENNE Yes Yes 0.08
MIDACO 10/10 10/10 2.54

NVS15 BONMIN Yes Yes 0.22
COUENNE Yes Yes 0.06
MIDACO 10/10 10/10 0.13

NVS16 BONMIN Yes Yes 0.25
COUENNE Yes Yes 0.08
MIDACO 10/10 10/10 0.08

156

Table 44: Individual results by BONMIN, COUENNE and MIDACO (continued)
Problem Solver Optimal Feasible T ime
NVS17 BONMIN Yes Yes 0.45

COUENNE No (-1096.8) Yes 124.81
MIDACO 10/10 10/10 0.58

NVS18 BONMIN Yes Yes 0.44
COUENNE No (-745.4) Yes 300.00
MIDACO 10/10 10/10 0.44

NVS19 BONMIN Yes Yes 1.38
COUENNE - No 300.00
MIDACO 10/10 10/10 0.74

NVS20 BONMIN No (241.4073) Yes 0.67
COUENNE Yes Yes 5.79
MIDACO 10/10 10/10 86.36

NVS21 BONMIN Yes Yes 0.79
COUENNE Yes Yes 0.18
MIDACO 7/10 10/10 0.61

NVS22 BONMIN Yes Yes 1.03
COUENNE Yes Yes 0.19
MIDACO 10/10 10/10 4.78

NVS23 BONMIN No (-1113.8) Yes 0.58
COUENNE No (-1104.4) Yes 300.00
MIDACO 10/10 10/10 0.95

NVS24 BONMIN No (-1031.8) Yes 0.52
COUENNE - No 300.00
MIDACO 10/10 10/10 1.29

WINDFAC BONMIN Yes Yes 0.43
COUENNE Yes Yes 0.61
MIDACO 1/10 10/10 43.87

OAER BONMIN Yes Yes 0.21
COUENNE Yes Yes 0.12
MIDACO 10/10 10/10 9.92

SPRING BONMIN Yes Yes 1.25
COUENNE Yes Yes 0.89
MIDACO 10/10 10/10 137.90

GEAR BONMIN Yes Yes 0.56
COUENNE Yes Yes 0.09
MIDACO 10/10 10/10 0.13

GEAR3 BONMIN Yes Yes 0.85
COUENNE Yes Yes 0.13
MIDACO 10/10 10/10 4.51

GEAR4 BONMIN Yes Yes 300.00
COUENNE Yes Yes 1.79
MIDACO 10/10 10/10 1.71

EX1252A BONMIN No (134471.5605) Yes 9.13
COUENNE Yes Yes 8.67
MIDACO 0/10 2/10 300.00

EX1263A BONMIN No (21.3) Yes 6.69
COUENNE No (21.3) Yes 1.09
MIDACO 3/10 10/10 11.12

157

Table 45: Individual results by BONMIN, COUENNE and MIDACO (continued)
Problem Solver Optimal Feasible T ime
EX1264A BONMIN No (9.3) Yes 10.86

COUENNE No (9.0) Yes 1.53
MIDACO 2/10 10/10 5.94

EX1265A BONMIN No (11.3) Yes 17.53
COUENNE No (10.6) Yes 4.24
MIDACO 1/10 10/10 11.09

EX1266A BONMIN Yes Yes 15.67
COUENNE Yes Yes 1.67
MIDACO 5/10 10/10 38.39

DU OPT5 BONMIN No (8.3266) Yes 2.58
COUENNE No (10.8967) Yes 300.00
MIDACO 10/10 10/10 106.31

DU OPT BONMIN Yes Yes 2.07
COUENNE No (9.3672) Yes 300.00
MIDACO 4/10 10/10 206.63

ST E32 BONMIN Yes Yes 1.45
COUENNE Yes Yes 21.06
MIDACO 0/10 0/10 300.00

ST E36 BONMIN Yes Yes 0.20
COUENNE Yes Yes 0.18
MIDACO 4/10 10/10 0.54

ST E38 BONMIN Yes Yes 0.13
COUENNE Yes Yes 0.11
MIDACO 10/10 10/10 1.07

ST E40 BONMIN - No 0.04
COUENNE Yes Yes 0.32
MIDACO 10/10 10/10 0.46

ST MIQP1 BONMIN Yes Yes 0.37
COUENNE Yes Yes 0.06
MIDACO 10/10 10/10 0.15

ST MIQP2 BONMIN Yes Yes 0.53
COUENNE Yes Yes 0.08
MIDACO 10/10 10/10 0.50

ST MIQP3 BONMIN Yes Yes 0.17
COUENNE Yes Yes 0.06
MIDACO 10/10 10/10 0.41

ST MIQP4 BONMIN Yes Yes 0.25
COUENNE Yes Yes 0.06
MIDACO 5/10 10/10 2.62

ST MIQP5 BONMIN Yes Yes 0.17
COUENNE Yes Yes 0.09
MIDACO 10/10 10/10 6.51

ST TEST1 BONMIN Yes Yes 0.33
COUENNE Yes Yes 0.09
MIDACO 10/10 10/10 0.51

ST TEST2 BONMIN Yes Yes 0.12
COUENNE Yes Yes 0.06
MIDACO 10/10 10/10 0.61

158

Table 46: Individual results by BONMIN, COUENNE and MIDACO (continued)
Problem Solver Optimal Feasible T ime
ST TEST3 BONMIN Yes Yes 0.76

COUENNE Yes Yes 0.08
MIDACO 10/10 10/10 3.13

ST TEST4 BONMIN - No 0.03
COUENNE Yes Yes 0.06
MIDACO 10/10 10/10 1.04

ST TEST5 BONMIN Yes Yes 1.29
COUENNE Yes Yes 0.23
MIDACO 10/10 10/10 0.41

ST TEST6 BONMIN Yes Yes 0.83
COUENNE Yes Yes 0.11
MIDACO 10/10 10/10 0.41

ST TEST8 BONMIN No (-29575.0) Yes 0.11
COUENNE Yes Yes 0.14
MIDACO 10/10 10/10 11.35

ST TESTGR1 BONMIN No (-12.7758) Yes 0.78
COUENNE No (-12.7842) Yes 0.08
MIDACO 10/10 10/10 1.07

ST TESTGR3 BONMIN No (-19.9724) Yes 0.14
COUENNE No (-20.4910) Yes 0.07
MIDACO 8/10 10/10 6.15

ST TESTPH4 BONMIN Yes Yes 0.16
COUENNE Yes Yes 0.06
MIDACO 10/10 10/10 0.16

TLN2 BONMIN Yes Yes 5.44
COUENNE Yes Yes 0.11
MIDACO 10/10 10/10 0.66

TLN4 BONMIN No (8.5) Yes 140.56
COUENNE Yes Yes 37.02
MIDACO 2/10 10/10 5.20

TLN5 BONMIN No (10.9) Yes 300.00
COUENNE No (10.6) Yes 300.00
MIDACO 1/10 10/10 13.27

TLN6 BONMIN No (19.0) Yes 300.00
COUENNE No (15.8) Yes 300.00
MIDACO 0/10 10/10 54.03

PROB02 BONMIN Yes Yes 0.14
COUENNE Yes Yes 0.09
MIDACO 10/10 10/10 0.68

TLOSS BONMIN Yes Yes 20.98
COUENNE Yes Yes 4.74
MIDACO 3/10 10/10 33.29

TLTR BONMIN Yes Yes 20.25
COUENNE Yes Yes 2.84
MIDACO 10/10 10/10 45.40

ALAN BONMIN Yes Yes 0.29
COUENNE Yes Yes 0.23
MIDACO 10/10 10/10 7.93

159

Table 47: Individual results by BONMIN, COUENNE and MIDACO (continued)
Problem Solver Optimal Feasible T ime
MEANVARX BONMIN No (14.5147) Yes 0.22

COUENNE Yes Yes 1.91
MIDACO 9/10 10/10 300.00

HMITTELMANN BONMIN Yes Yes 9.38
COUENNE Yes Yes 0.36
MIDACO 10/10 10/10 0.74

160

Bibliography

[1] M. A. Abramson. Mixed variable optimization of a load-bearing thermal insulation
system using a filter pattern search algorithm. Optim. Eng., 5(2):157–177, 2004.

[2] M. A. Abramson. Nomadm optimization software. Software available at http:

//www.gerad.ca/NOMAD/Abramson/nomadm.html, 2011.

[3] M. A. Abramson, C. Audet, J. Chrissis, and J. Walston. Mesh adaptive direct search
algorithms for mixed variable optimization. Opt. Lett., 3(1):35–47, 2009.

[4] COIN-OR (Project Manager P. Belotti). Convex over and under envelopes for non-
linear estimation. Software available at http://www.coin-or.org/Couenne/, 2011.

[5] D. A. Benson. A Gauss Pseudospectral Transcription for Optimal Control. PhD the-
sis, Department of Aeronautics and Astronautics, Massachusetts Institute of Tech-
nology, 2004.

[6] COIN-OR (Project Manager P. Bonami). Basic open-source nonlinear mixed integer
programming. Software available at http://www.coin-or.org/Bonmin/, 2011.

[7] G. E. P. Box and M. E. Mueller. A note on the generation of random normal deviates.
Ann. Math. Stat., 29(2):610–611, 1958.

[8] M. R. Bussieck and S. Vigerske. MINLP Solver Software. John Wiley and Sons, Inc.,
2010.

[9] B.K.S. Cheung, A. Langevin, and H. Delmaire. Coupling genetic algorithm with a
grid search method to solve mixed integer nonlinear programming problems. Comput.
Math. Appl., 34(12):13 – 23, 1997.

[10] C.A. Coello Coello. Theoretical and numerical constraint-handling techniques used
with evolutionary algorithms: A survey of the state of the art. Comput. Method.
Appl. M., 191(11):1245–1287, 2002.

[11] D.W. Coit and Smith A.E. Penalty guided genetic search for reliability design opti-
mization. Comput. Ind. Eng., 30(4):895 – 904, 1996.

161

http://www.gerad.ca/NOMAD/Abramson/nomadm.html
http://www.gerad.ca/NOMAD/Abramson/nomadm.html
http://www.coin-or.org/Couenne/
http://www.coin-or.org/Bonmin/

[12] M. Dorigo. Optimization, Learning and Natural Algorithms. PhD thesis, Politecnico
di Milano (Italy), 1992.

[13] M. Dorigo and T. Stuetzle. Ant Colony Optimization. MIT Press, 2004.

[14] M. Duran and I. Grossmann. An outer-approximation algorithm for a class of mixed-
integer nonlinear programs. Math. Program., 36(3):307–339, 1986.

[15] European Space Agency (ESA) and Advanced Concepts Team (ACT). Gtop database
- global optimisation trajectory problems and solutions. Software available at http:
//www.esa.int/gsp/ACT/inf/op/globopt.htm, 2011.

[16] O. Exler, L. T. Antelo, J. A. Egea, A. A. Alonso, and J. R. Banga. A tabu search-
based algorithm for mixed-integer nonlinear problems and its application to inte-
grated process and control system design. Comput. Chem. Eng., 32(8):1877–1891,
2008.

[17] O. Exler, T. Lehmann, and K. Schittkowski. A comparative study of SQP-type
algorithms for nonlinear and nonconvex mixed-integer optimization. submitted, 2011.

[18] O. Exler and K. Schittkowski. A trust region SQP algorithm for mixed-integer non-
linear programming. Opt. Lett., 1(3):269–280, 2007.

[19] R. Fletcher and S. Leyffer. Solving mixed integer nonlinear programs by outer ap-
proximation. Math. Program., 66(1):327–349, 1994.

[20] R. Fletcher and S. Leyffer. Nonlinear programming without a penalty function. Math.
Program., 91:239–270, 2002.

[21] GAMS. General algebraic modeling system. Software available at http://www.gams.
com/, 2011.

[22] GAMS. MINLPlib - a collection of mixed integer nonlinear programming models.
Software available at http://www.gamsworld.org/minlp/minlplib.htm, 2011.

[23] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, 1978.

[24] A. M. Geoffrion. Generalized benders decomposition. J. Optimiz. Theory App.,
10(4):237–260, 1972.

[25] F. Glover and M. Laguna. Tabu Search. Kluwer Academic Publishers, Norwell, MA,
USA, 1997.

[26] I. E. Grossmann. Review of nonlinear mixed-integer and disjunctive programming
techniques. Optim. Eng., 3(3):227–252, 2002.

162

http://www.esa.int/gsp/ACT/inf/op/globopt.htm
http://www.esa.int/gsp/ACT/inf/op/globopt.htm
http://www.gams.com/
http://www.gams.com/
http://www.gamsworld.org/minlp/minlplib.htm

[27] A.B. Hadj-Alouane and J.C. Bean. A genetic algorithm for the multiple choice integer
program. Oper. Res., 45(3):92–101, 1997.

[28] M. Haenel, S. Kuhn, D. Henrich, L. Gruene, and J. Pannek. Optimal camera place-
ment to measure distances conservativly regarding static and dynamic obstacles.
Article available at http://arxiv.org/abs/1105.3270, 2011.

[29] M.R. Hestenes. Multiplier and gradient methods. J. Optimiz. Theory App., 4:303–
320, 1969.

[30] A. Homaifar, C.X. Qi, and S.H. Lai. Constrained optimization via genetic algorithms.
Simulation, 62(4):242–253, 1994.

[31] G. T. Huntington. Advancement and Analysis of a Gauss Pseudospectral Transcrip-
tion for Optimal Control Problems. PhD thesis, Department of Aeronautics and
Astronautics, Massachusetts Institute of Technology, 2007.

[32] Y. Kaya, C. and L. Noakes, J. Computational algorithm for time-optimal switching
control. J. Optimiz. Theory App., 117(1):69–92, 2003.

[33] Dennis Jr. J. E. Kokkolaras M., Audet C. Mixed variable optimization of the number
and composition of heat intercepts in a thermal insulation system. Optim. Eng.,
2(1):5–29, 2000.

[34] A. H. Land and A. G. Doig. An automatic method of solving discrete programming
problems. Econometrica, 28(3):497–520, 1960.

[35] G. Marsaglia. Xorshift RNGs. J. Stat. Softw., 8(14):1–6, 2003.

[36] A. Munawar, M. Wahib, M. Munetomo, and K. Akama. Advanced genetic algorithm
to solve minlp problems over gpu. In Evolutionary Computation (CEC), 2011 IEEE
Congress, pages 318–325, 2011.

[37] A. V. Rao, D. A. Benson, C. L. Darby, M. A. Patterson, C. Francolin, and G. T.
Huntington. Algorithm 902: Gpops, a matlab software for solving multiple-phase
optimal control problems using the gauss pseudospectral method. ACM T. Math.
Software, 37(2):1–39, 2010.

[38] G. Rudolph. Convergence Properties of Evolutionary Algorithms. Kovac, 1997.

[39] S. Sager. mintOC: Benchmark library of mixed-integer optimal control problems.
Software available at http://mintoc.de, 2011.

[40] K. Schittkowski. A collection of 100 test problems for nonlinear mixed-integer pro-
gramming in fortran (user guide). Report, Department of Computer Science, Uni-
versity of Bayreuth, Bayreuth, 2009.

163

http://arxiv.org/abs/1105.3270
http://mintoc.de

[41] K. Schittkowski. NLPQLP - a fortran implementation of a sequential quadratic
programming algorithm with distributed and non-monotone line search (user guide).
Report, Department of Computer Science, University of Bayreuth, Bayreuth, 2009.

[42] M. Schlueter. MIDACO - Global Optimization Software for Mixed Integer Nonlinear
Programming. Software available at http://www.midaco-solver.com, 2012.

[43] M. Schlueter, J. A. Egea, and J. R. Banga. Extended ant colony optimization for non-
convex mixed integer nonlinear programming. Comput. Oper. Res., 36(7):2217–2229,
2009.

[44] M. Schlueter, J. A. Egea, Antelo L.T., Alonso A.A., and J. R. Banga. An extended
ant colony optimization algorithm for integrated process and control system design.
Ind. Eng. Chem., 48(14):6723–6738, 2009.

[45] M. Schlueter and M Gerdts. The oracle penalty method. J. Global Optim., 47(2):293–
325, 2010.

[46] M. Schlueter, M. Gerdts, and Rueckmann J.J. Non-linear mixed-integer-based opti-
misation technique for space applications, ESA NPI Day (poster). Poster available
at http://www.midaco-solver.com/download_files/ESA_NPI_Poster.jpg, 2010.

[47] M. Schlueter, M. Gerdts, and Rueckmann J.J. A numerical study of MIDACO on
100 MINLP benchmarks. Optimization (DOI:10.1080/02331934.2012.668545), 2012.

[48] M. Socha, K. Dorigo. Ant colony optimization for continuous domains. Eur. J. Oper.,
185(3):1155–1173, 2008.

[49] A.T. Takano and B.G. Marchand. Optimal constellation design for space based
situational awareness applications (AAS 11-543). Article available at http://www.

ae.utexas.edu/~marchand/AAS11-543.pdf, 2011.

[50] M. Tawarmalani and N. V. Sahinidis. Convexification and Global Optimization in
Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Soft-
ware, and Applications. Kluwer Academic Publishers, 2002.

[51] Z. Ugray, L. Lasdon, J. Plummer, F. Glover, J. Kelly, and R. Marti. Scatter search
and local nlp solvers: A multistart framework for global optimization. Informs J. on
Computing, 19(3):328–340, July 2007.

[52] T. Westerlund and F. Pettersson. An extended cutting plane method for solving
convex minlp problems. Comput. Chem. Eng., 19(1):131 – 136, 1995.

[53] O. Yeniay. Penalty function methods for constrained optimization with genetic algo-
rithms. Math. Comput. Appl., 10(1):45–56, 2005.

164

http://www.midaco-solver.com
http://www.midaco-solver.com/download_files/ESA_NPI_Poster.jpg
http://www.ae.utexas.edu/~marchand/AAS11-543.pdf
http://www.ae.utexas.edu/~marchand/AAS11-543.pdf

[54] L. Yiqing, Y. Xigang, and L. Yongjian. An improved pso algorithm for solving non-
convex nlp/minlp problems with equality constraints. Comp. Chem. Eng., 31(3):153
– 162, 2007.

165

	Title
	Abstract
	Acknowledgements
	Contents
	List of Tables
	List of Figures
	Notation
	Introduction
	Mixed Integer Nonlinear Programming
	Branch and Bound Method
	Outer Approximation
	Generalized Benders Decomposition
	Other approaches on MINLP
	Extended Cutting Plane Method
	SQP-based Method
	Mesh Adaptive Direct Search Method
	Stochastic Metaheuristics and Hybrid Algorithms

	Ant Colony Optimization
	ACO for MINLP General Definitions
	An Explicit ACO Operator for MINLP
	ACO for MINLP Pseudo Code
	A Illustrative Example of ACO for MINLP
	Numerical Example Calculation
	Graphical Illustration of Multi-Kernel Gauss PDF's

	The Oracle Penalty Method
	Examples of Common Penalty Methods
	Development of the Oracle Penalty Method
	Basic Oracle Penalty Function
	Extensions for the Basic Oracle Penalty Function
	Extended Oracle Penalty Function
	Update Rule and Implementation

	MIDACO Software
	Reverse Communication and Distributed Computing
	Parameters and Print Options
	Hybridization with SQP

	Numerical Results on MINLP Benchmark Sets
	Evaluation of the Oracle Penalty Method
	MIDACO Performance Comparison with MISQP
	Performance of SQP-based Algorithms
	MIDACO Performance on 100 MINLP Benchmarks

	MIDACO Performance Comparison with BONMIN and COUENNE
	MIDACO Performance using Parallelization

	Numerical Results on Real World Applications
	Optimal Control of an F8-Aircraft Manoeuvre
	Thermal Insulation System Application (Heat Shield Problem)
	Satellite Constellation Optimization
	ESA/ACT: Global Trajectory Optimization Problems
	Interplanetary Space Mission Design
	Space Mission Layout
	Numerical Results
	Space Mission Design: Conclusions

	Multiple-Stage Launch Vehicle Ascent Problem
	Vehicle Properties
	Mixed Integer Extensions
	Additional Constraints
	Numerical Results
	Launch Vehicle: Conclusions and Interpretation

	Conclusions
	Appendix A
	Appendix B
	Appendix C
	Bibliography

